Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPA |
Texto Completo: | http://repositorio.ufpa.br/jspui/handle/2011/7278 |
Resumo: | Essa tese propõe um algoritmo neuro-evolutivo (ANE) que utiliza um esquema de codificação indireto compacto para representar seus genótipos (um conjunto de dez regras de produção de um sistema de lindenmayer com memória), além disso, possui a habilidade de reuso dos genótipos e automaticamente construir redes neurais modulares, hierárquicas e recorrentes. Um algoritmo genético evolui um sistema de lindenmayer (sistema-l) que é usado para projetar a arquitetura de redes neurais. Essa codificação neural proporciona redução de escalabilidade e do espaço de busca em relação a outros métodos, possibilitando uma busca mais eficiente no espaço infinito de arquiteturas de redes neurais. Em adição, o sistema usa um mecanismo de checagem paralelo do genoma que aumenta o paralelismo implícito e a convergência do AG. A função fitness do ANE recompensa redes neurais que são facilmente implementadas. Essa é a primeira tentativa de gerar redes recorrentes a partir dessa combinação de metáforas. O ANE foi testado utilizando cinco bancos de dados do mundo real para classificação e três bens conhecidos para predição de séries temporais (PST). Os resultados são estatisticamente comparados com algoritmos proeminentes citados no estado da arte e com vários métodos de predição (ADANN, ARIMA, UCM e Forecast Pro®). Na maioria dos casos, o ANE superou os outros métodos produzindo classificação e predição de séries temporais mais precisas com um menor esforço computacional. Esses resultados são atribuídos a melhoria da eficácia e eficiência no processo de tomada de decisão. O resultado é uma arquitetura de rede neural otimizada para resolver problemas de classificação e simular problemas dinâmicos. |
id |
UFPA_a571ae67ab4c090410de9f1a43ce3436 |
---|---|
oai_identifier_str |
oai:repositorio.ufpa.br:2011/7278 |
network_acronym_str |
UFPA |
network_name_str |
Repositório Institucional da UFPA |
repository_id_str |
2123 |
spelling |
2017-01-11T13:53:34Z2017-01-11T13:53:34Z2016-08-26CAMPOS, Lidio Mauro Lima de. Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória. 2016. 208 f. Tese (Doutorado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2016. Programa de Pós-Graduação em Engenharia Elétrica.http://repositorio.ufpa.br/jspui/handle/2011/7278Essa tese propõe um algoritmo neuro-evolutivo (ANE) que utiliza um esquema de codificação indireto compacto para representar seus genótipos (um conjunto de dez regras de produção de um sistema de lindenmayer com memória), além disso, possui a habilidade de reuso dos genótipos e automaticamente construir redes neurais modulares, hierárquicas e recorrentes. Um algoritmo genético evolui um sistema de lindenmayer (sistema-l) que é usado para projetar a arquitetura de redes neurais. Essa codificação neural proporciona redução de escalabilidade e do espaço de busca em relação a outros métodos, possibilitando uma busca mais eficiente no espaço infinito de arquiteturas de redes neurais. Em adição, o sistema usa um mecanismo de checagem paralelo do genoma que aumenta o paralelismo implícito e a convergência do AG. A função fitness do ANE recompensa redes neurais que são facilmente implementadas. Essa é a primeira tentativa de gerar redes recorrentes a partir dessa combinação de metáforas. O ANE foi testado utilizando cinco bancos de dados do mundo real para classificação e três bens conhecidos para predição de séries temporais (PST). Os resultados são estatisticamente comparados com algoritmos proeminentes citados no estado da arte e com vários métodos de predição (ADANN, ARIMA, UCM e Forecast Pro®). Na maioria dos casos, o ANE superou os outros métodos produzindo classificação e predição de séries temporais mais precisas com um menor esforço computacional. Esses resultados são atribuídos a melhoria da eficácia e eficiência no processo de tomada de decisão. O resultado é uma arquitetura de rede neural otimizada para resolver problemas de classificação e simular problemas dinâmicos.This thesis proposes a hybrid neuro-evolutive algorithm (NEA) that uses a compact indirect encoding scheme (IES) for representing its genotypes (a set of ten production rules of a Lindenmayer System with memory), moreover has the ability to reuse the genotypes and automatically build modular, hierarchical and recurrent neural networks. A genetic algorithm (GA) evolves a Lindenmayer System (L-System) that is used to design the neural network’s architecture. This basic neural codification confers scalability and search space reduction in relation to other methods. Furthermore, the system uses a parallel genome scan engine that increases both the implicit parallelism and convergence of the GA. The fitness function of the NEA rewards economical artificial neural networks (ANNs) that are easily implemented. The NEA was tested on five real-world classification datasets and three well-known datasets for time series forecasting (TSF). The results are statistically compared against established stateof- the-art algorithms and various forecasting methods (ADANN, ARIMA, UCM, and Forecast Pro®). In most cases, our NEA outperformed the other methods, delivering the most accurate classification and time series forecasting with the least computational effort. These superior results are attributed to the improved effectiveness and efficiency of NEA in the decisionmaking process. The result is an optimized neural network architecture for solving classification problems and simulating dynamical systems.porUniversidade Federal do ParáPrograma de Pós-Graduação em Engenharia ElétricaUFPABrasilInstituto de TecnologiaCNPQ::ENGENHARIAS::ENGENHARIA ELETRICACNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORedes neurais (Computação)Computação evolucionáriaAlgoritmos genéticosRedes neurais artificiaisUma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memóriainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOLIVEIRA, Roberto Célio Limão dehttp://lattes.cnpq.br/4497607460894318ROISENBERG, Maurohttp://lattes.cnpq.br/5872119613051645http://lattes.cnpq.br/0970111009687779CAMPOS, Lidio Mauro Lima deinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPAinstname:Universidade Federal do Pará (UFPA)instacron:UFPAORIGINALTese_MetodologiaBiologicamenteInspirada.pdfTese_MetodologiaBiologicamenteInspirada.pdfapplication/pdf6813858http://repositorio.ufpa.br/oai/bitstream/2011/7278/1/Tese_MetodologiaBiologicamenteInspirada.pdfe9f8d255746d2cab6cd257d65d193c43MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.ufpa.br/oai/bitstream/2011/7278/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.ufpa.br/oai/bitstream/2011/7278/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.ufpa.br/oai/bitstream/2011/7278/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81866http://repositorio.ufpa.br/oai/bitstream/2011/7278/5/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD55TEXTTese_MetodologiaBiologicamenteInspirada.pdf.txtTese_MetodologiaBiologicamenteInspirada.pdf.txtExtracted texttext/plain376444http://repositorio.ufpa.br/oai/bitstream/2011/7278/6/Tese_MetodologiaBiologicamenteInspirada.pdf.txt10c8ebe0998b3dd0fac6ed7171e19dd9MD562011/72782017-12-14 12:47:52.775oai:repositorio.ufpa.br:2011/7278TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpa.br/oai/requestriufpabc@ufpa.bropendoar:21232017-12-14T15:47:52Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)false |
dc.title.pt_BR.fl_str_mv |
Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória |
title |
Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória |
spellingShingle |
Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória CAMPOS, Lidio Mauro Lima de CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Redes neurais (Computação) Computação evolucionária Algoritmos genéticos Redes neurais artificiais |
title_short |
Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória |
title_full |
Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória |
title_fullStr |
Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória |
title_full_unstemmed |
Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória |
title_sort |
Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória |
author |
CAMPOS, Lidio Mauro Lima de |
author_facet |
CAMPOS, Lidio Mauro Lima de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
OLIVEIRA, Roberto Célio Limão de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4497607460894318 |
dc.contributor.advisor-co1.fl_str_mv |
ROISENBERG, Mauro |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/5872119613051645 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0970111009687779 |
dc.contributor.author.fl_str_mv |
CAMPOS, Lidio Mauro Lima de |
contributor_str_mv |
OLIVEIRA, Roberto Célio Limão de ROISENBERG, Mauro |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Redes neurais (Computação) Computação evolucionária Algoritmos genéticos Redes neurais artificiais |
dc.subject.por.fl_str_mv |
Redes neurais (Computação) Computação evolucionária Algoritmos genéticos Redes neurais artificiais |
description |
Essa tese propõe um algoritmo neuro-evolutivo (ANE) que utiliza um esquema de codificação indireto compacto para representar seus genótipos (um conjunto de dez regras de produção de um sistema de lindenmayer com memória), além disso, possui a habilidade de reuso dos genótipos e automaticamente construir redes neurais modulares, hierárquicas e recorrentes. Um algoritmo genético evolui um sistema de lindenmayer (sistema-l) que é usado para projetar a arquitetura de redes neurais. Essa codificação neural proporciona redução de escalabilidade e do espaço de busca em relação a outros métodos, possibilitando uma busca mais eficiente no espaço infinito de arquiteturas de redes neurais. Em adição, o sistema usa um mecanismo de checagem paralelo do genoma que aumenta o paralelismo implícito e a convergência do AG. A função fitness do ANE recompensa redes neurais que são facilmente implementadas. Essa é a primeira tentativa de gerar redes recorrentes a partir dessa combinação de metáforas. O ANE foi testado utilizando cinco bancos de dados do mundo real para classificação e três bens conhecidos para predição de séries temporais (PST). Os resultados são estatisticamente comparados com algoritmos proeminentes citados no estado da arte e com vários métodos de predição (ADANN, ARIMA, UCM e Forecast Pro®). Na maioria dos casos, o ANE superou os outros métodos produzindo classificação e predição de séries temporais mais precisas com um menor esforço computacional. Esses resultados são atribuídos a melhoria da eficácia e eficiência no processo de tomada de decisão. O resultado é uma arquitetura de rede neural otimizada para resolver problemas de classificação e simular problemas dinâmicos. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-08-26 |
dc.date.accessioned.fl_str_mv |
2017-01-11T13:53:34Z |
dc.date.available.fl_str_mv |
2017-01-11T13:53:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CAMPOS, Lidio Mauro Lima de. Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória. 2016. 208 f. Tese (Doutorado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2016. Programa de Pós-Graduação em Engenharia Elétrica. |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufpa.br/jspui/handle/2011/7278 |
identifier_str_mv |
CAMPOS, Lidio Mauro Lima de. Uma metodologia biologicamente inspirada para projeto automático de redes neurais artificiais usando Sistemas-L paramétricos com memória. 2016. 208 f. Tese (Doutorado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2016. Programa de Pós-Graduação em Engenharia Elétrica. |
url |
http://repositorio.ufpa.br/jspui/handle/2011/7278 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Pará |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
dc.publisher.initials.fl_str_mv |
UFPA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal do Pará |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPA instname:Universidade Federal do Pará (UFPA) instacron:UFPA |
instname_str |
Universidade Federal do Pará (UFPA) |
instacron_str |
UFPA |
institution |
UFPA |
reponame_str |
Repositório Institucional da UFPA |
collection |
Repositório Institucional da UFPA |
bitstream.url.fl_str_mv |
http://repositorio.ufpa.br/oai/bitstream/2011/7278/1/Tese_MetodologiaBiologicamenteInspirada.pdf http://repositorio.ufpa.br/oai/bitstream/2011/7278/2/license_url http://repositorio.ufpa.br/oai/bitstream/2011/7278/3/license_text http://repositorio.ufpa.br/oai/bitstream/2011/7278/4/license_rdf http://repositorio.ufpa.br/oai/bitstream/2011/7278/5/license.txt http://repositorio.ufpa.br/oai/bitstream/2011/7278/6/Tese_MetodologiaBiologicamenteInspirada.pdf.txt |
bitstream.checksum.fl_str_mv |
e9f8d255746d2cab6cd257d65d193c43 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 43cd690d6a359e86c1fe3d5b7cba0c9b 10c8ebe0998b3dd0fac6ed7171e19dd9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA) |
repository.mail.fl_str_mv |
riufpabc@ufpa.br |
_version_ |
1801771976254029824 |