Produção de nanofibras pelas técnicas de Solution Blow Spinning (SBS) e Supersonic Solution Blowing (SSB) e suas aplicações para conversão e armazenamento de energia

Detalhes bibliográficos
Autor(a) principal: Silva, Vinícius Dias
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/123456789/26994
Resumo: Uma rápida transição energética para fontes menos poluidoras, como demanda a urgência global, não será impulsionada por uma única tecnologia em particular. É preciso que todas as tecnologias disponíveis evoluam para satisfazer a necessidade de cada demanda do ecossistema energético, isto é, da conversão, armazenamento, e distribuição de energia. Dessa forma, é imprescindível que meios intermitentes de conversão de energia como a eólica e a solar, estejam trabalhando de forma integrada com sistemas de redes avançadas de armazenamento, tais como supercapacitores e baterias. Na outra linha ação, o hidrogênio (H2) verde tem sido considerado como uma das mais promissoras fontes de combustível renovável para atender à crescente demanda global. Entre os métodos de produção do H2 verde, a rota através da eletrólise da água é capaz de produzir H2 de alta pureza e de forma totalmente sustentável. Nesta tese, nós desenvolvemos um estudo utilizando duas técnicas o Solution Blow Spinning (SBS) e o Supersonic Solution Blowing (SSB) na produção de nanofibras para serem aplicadas como materiais de eletrodos na catálise heterogênea e, como eletrodos de dispositivos de armazenamento de energia eletroquímica (supercapacitores, eletrodos tipo bateria, anodos de íons de lítio). Focando na possível aplicação em larga escala, as razões e os momentos em que as técnicas devem ser aplicadas foram discutidas. Assim como também, foi sintetizado nanofibras à base de materiais abundantes e de baixo custo com boas propriedades eletroquímicas, tais como, carbono e metais de transição, que possam vir a substituir os metais nobres, que encarecem as tecnologias atuais. Como resultados, foi introduzido com sucesso um estudo inédito para à obtenção de nanofibras ocas, e quando aplicado na produção de nanofibras de óxidos à base de Ni/Ce, possibilitou obter eletrodos do tipo-bateria com capacidade superior à de outros trabalhos reportados. E, nanofibras de óxidos de alta entropia produzidas pela primeira vez pela técnica SBS, foram usadas diretamente como eletrocatalisadores, revelando desempenho catalítico global (atividade e estabilidade) aplicáveis. Aqui, foi demonstrado que nanofibras de carbono como suporte para nanopartículas atuares como centros ativos catalítico, é uma estratégia altamente racional para o desenvolvimento de eletrodos autossuportados duráveis, uma vez que impede a desativação e degradação por coalescência. Nanofibras de carbono (micro e mesoporosas) com ultra-alta área superficial acima de 4000 m2/g também foram obtidas, revelando alto desempenho como supercapacitores de dupla camada elétrica. E, foi proposto pela primeira vez na literatura, um coeficiente fundamental de área-diâmetro do eletrodo fibrilar [FEADC, em m2/(g nm)], que unifica os parâmetros diâmetro das nanofibras e área superficial, onde foi argumentado e sugerido que este coeficiente seja implementado na análise de eletrodos de supercapacitores nanofibrosos. Quando essas mesmas nanofibras de ultra-alta área superficial foram aplicadas como anodo para baterias de íons de lítio, apresentaram valores de capacidade superior à teórica do grafite, que é o material de eletrodo usado nas baterias de íons de lítio comerciais. Em suma, a aplicação das técnicas SBS e SSB foram exploradas com sucesso no design de eletrodos nanofibrosos autossuportados para dispositivos de conversão e armazenamento de energia eletroquímica.
id UFPB-2_7710eabbe1de04dce01752631ca4a4e6
oai_identifier_str oai:repositorio.ufpb.br:123456789/26994
network_acronym_str UFPB-2
network_name_str Repositório Institucional da UFPB
repository_id_str
spelling 2023-05-22T18:22:09Z2024-03-212023-05-22T18:22:09Z2023-02-14https://repositorio.ufpb.br/jspui/handle/123456789/26994Uma rápida transição energética para fontes menos poluidoras, como demanda a urgência global, não será impulsionada por uma única tecnologia em particular. É preciso que todas as tecnologias disponíveis evoluam para satisfazer a necessidade de cada demanda do ecossistema energético, isto é, da conversão, armazenamento, e distribuição de energia. Dessa forma, é imprescindível que meios intermitentes de conversão de energia como a eólica e a solar, estejam trabalhando de forma integrada com sistemas de redes avançadas de armazenamento, tais como supercapacitores e baterias. Na outra linha ação, o hidrogênio (H2) verde tem sido considerado como uma das mais promissoras fontes de combustível renovável para atender à crescente demanda global. Entre os métodos de produção do H2 verde, a rota através da eletrólise da água é capaz de produzir H2 de alta pureza e de forma totalmente sustentável. Nesta tese, nós desenvolvemos um estudo utilizando duas técnicas o Solution Blow Spinning (SBS) e o Supersonic Solution Blowing (SSB) na produção de nanofibras para serem aplicadas como materiais de eletrodos na catálise heterogênea e, como eletrodos de dispositivos de armazenamento de energia eletroquímica (supercapacitores, eletrodos tipo bateria, anodos de íons de lítio). Focando na possível aplicação em larga escala, as razões e os momentos em que as técnicas devem ser aplicadas foram discutidas. Assim como também, foi sintetizado nanofibras à base de materiais abundantes e de baixo custo com boas propriedades eletroquímicas, tais como, carbono e metais de transição, que possam vir a substituir os metais nobres, que encarecem as tecnologias atuais. Como resultados, foi introduzido com sucesso um estudo inédito para à obtenção de nanofibras ocas, e quando aplicado na produção de nanofibras de óxidos à base de Ni/Ce, possibilitou obter eletrodos do tipo-bateria com capacidade superior à de outros trabalhos reportados. E, nanofibras de óxidos de alta entropia produzidas pela primeira vez pela técnica SBS, foram usadas diretamente como eletrocatalisadores, revelando desempenho catalítico global (atividade e estabilidade) aplicáveis. Aqui, foi demonstrado que nanofibras de carbono como suporte para nanopartículas atuares como centros ativos catalítico, é uma estratégia altamente racional para o desenvolvimento de eletrodos autossuportados duráveis, uma vez que impede a desativação e degradação por coalescência. Nanofibras de carbono (micro e mesoporosas) com ultra-alta área superficial acima de 4000 m2/g também foram obtidas, revelando alto desempenho como supercapacitores de dupla camada elétrica. E, foi proposto pela primeira vez na literatura, um coeficiente fundamental de área-diâmetro do eletrodo fibrilar [FEADC, em m2/(g nm)], que unifica os parâmetros diâmetro das nanofibras e área superficial, onde foi argumentado e sugerido que este coeficiente seja implementado na análise de eletrodos de supercapacitores nanofibrosos. Quando essas mesmas nanofibras de ultra-alta área superficial foram aplicadas como anodo para baterias de íons de lítio, apresentaram valores de capacidade superior à teórica do grafite, que é o material de eletrodo usado nas baterias de íons de lítio comerciais. Em suma, a aplicação das técnicas SBS e SSB foram exploradas com sucesso no design de eletrodos nanofibrosos autossuportados para dispositivos de conversão e armazenamento de energia eletroquímica.A rapid energy transition to less polluting sources, as the global urgency demands, will not be driven by a single technology. It is necessary that all available technologies evolve to meet the needs of each demand of the energy ecosystem, that is, the conversion, storage, and distribution of energy. Thus, it is imperative that intermittent means of energy conversion, such as wind and solar, are working in an integrated manner with advanced storage network systems, such as supercapacitors and batteries. In the other line of action, green hydrogen (H2) has been considered as one of the most promising sources of renewable fuel to meet the growing global demand. Among the green H2 production methods, the route through water electrolysis can produce high purity H2 in a completely sustainable way. In this thesis, we developed a study using two techniques the solution blow spinning (SBS) and supersonic solution blowing (SSB) in the production of nanofibers to be applied as electrode materials in heterogeneous catalysis and as electrodes in electrochemical energy storage devices (supercapacitors, battery-type electrodes, lithium-ion anodes). Focusing on the possible large-scale application, the reasons, and moments in which the techniques should be applied were discussed. As well as nanofibers were synthesized based on abundant materials and with good electrochemical properties, such as carbon and transition metals, which may replace the noble metals that make current technologies more expensive. As a result, an unprecedented study was successfully introduced to obtain hollow nanofibers, and when applied to the production of oxide nanofibers based on Ni/Ce, it made it possible to obtain battery-type electrodes with a capacity superior to that of other reported works. And high entropy oxide nanofibers produced for the first time by the SBS technique, were used directly as electrocatalysts, revealing global catalytic performance (activity and stability) applicable. Here, it was demonstrated that using carbon nanofibers as a support for nanoparticles to act as active catalytic centers is a highly rational strategy for the development of durable self-supporting electrodes, as it prevents deactivation and degradation by coalescence. Carbon nanofibers (micro and mesoporous) with ultra-high surface area above 4000 m2/g were also obtained, revealing high performance as electrical double layer supercapacitors. And, for the first time in the literature, a fundamental area-diameter coefficient of the fibrillar electrode [FEADC, in m2/(g nm)] was proposed, which unifies the parameters diameter of the nanofibers and surface area, where it was argued and suggested that this coefficient is implemented in the analysis of nanofibrous supercapacitors electrodes. When these same ultra-high surface area nanofibers were applied as an anode for lithium-ion batteries, they showed capacity values superior to the theoretical graphite, which is the electrode material used in commercial lithium-ion batteries. In short, the application of SBS and SSB techniques have been successfully explored in the design of self-supporting nanofibrous electrodes for electrochemical energy conversion and storage devices.Submitted by Fernando Augusto Alves Vieira (fernandovieira@biblioteca.ufpb.br) on 2023-05-17T11:04:48Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) ViníciusDiasSilva_Tese.pdf: 18129200 bytes, checksum: b6f630574c948a2c2476e2a0fbe76b04 (MD5)Approved for entry into archive by Biblioteca Digital de Teses e Dissertações BDTD (bdtd@biblioteca.ufpb.br) on 2023-05-22T18:22:09Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) ViníciusDiasSilva_Tese.pdf: 18129200 bytes, checksum: b6f630574c948a2c2476e2a0fbe76b04 (MD5)Made available in DSpace on 2023-05-22T18:22:09Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) ViníciusDiasSilva_Tese.pdf: 18129200 bytes, checksum: b6f630574c948a2c2476e2a0fbe76b04 (MD5) Previous issue date: 2023-02-14Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal da ParaíbaPrograma de Pós-Graduação em Ciência e Engenharia de MateriaisUFPBBrasilEngenharia de MateriaisAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/embargoedAccessCNPQ::ENGENHARIASNanofibras de carbonoBaterias de íons de lítioHidrogênio verdeSolution Blow Spinning - SBSEletrocatáliseCarbon nanofibersLithium Ion batteriesGreen hydrogenElectrocatalysisProdução de nanofibras pelas técnicas de Solution Blow Spinning (SBS) e Supersonic Solution Blowing (SSB) e suas aplicações para conversão e armazenamento de energiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisMedeiros, Eliton Souto dehttp://lattes.cnpq.br/7096228449228489Macedo, Daniel Araújo dehttp://lattes.cnpq.br/102749681444377700983479429http://lattes.cnpq.br/5613831898438810Silva, Vinícius Diasreponame:Repositório Institucional da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPBTEXTViníciusDiasSilva_Tese.pdf.txtViníciusDiasSilva_Tese.pdf.txtExtracted texttext/plain505433https://repositorio.ufpb.br/jspui/bitstream/123456789/26994/4/Vin%c3%adciusDiasSilva_Tese.pdf.txt534b5ddca4e50661e92a755485b9e1dfMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82390https://repositorio.ufpb.br/jspui/bitstream/123456789/26994/3/license.txte20ac18e101915e6935b82a641b985c0MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.ufpb.br/jspui/bitstream/123456789/26994/2/license_rdfc4c98de35c20c53220c07884f4def27cMD52ORIGINALViníciusDiasSilva_Tese.pdfViníciusDiasSilva_Tese.pdfapplication/pdf18129200https://repositorio.ufpb.br/jspui/bitstream/123456789/26994/1/Vin%c3%adciusDiasSilva_Tese.pdfb6f630574c948a2c2476e2a0fbe76b04MD51123456789/269942023-05-23 08:24:20.448QVVUT1JJWkHDh8ODTyBFIExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpBdXRvcml6byBlIGVzdG91IGRlIGFjb3JkbywgbmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbyBhdXRvLWRlcG9zaXRhZGEsIGNvbmZvcm1lIExlaSBuwrogOTYxMC85OCwgb3Mgc2VndWludGVzIHRlcm1vczoKIApEYSBEaXN0cmlidWnDp8OjbyBuw6NvLWV4Y2x1c2l2YSAKTyBhdXRvciBkZWNsYXJhIHF1ZTogCmEpIE8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0ZSB0ZXJtby4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50byBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuIApiKSBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSBjb250w6ltIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBwYXJhIGNvbmNlZGVyIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgUGFyYcOtYmEgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0ZSB0ZXJtbywgZSBxdWUgZXNzZSBtYXRlcmlhbCBjdWpvcyBkaXJlaXRvcyBzw6NvIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IGNvbnRlw7pkbyBkbyB0cmFiYWxobyBlbnRyZWd1ZS4gCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIGJhc2VhZG8gZW0gdHJhYmFsaG8gZmluYW5jaWFkbyBvdSBhcG9pYWRvIHBvciBvdXRyYSBpbnN0aXR1acOnw6NvIHF1ZSBuw6NvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgUGFyYcOtYmEgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCmQpIENvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZQQiBvIGRpcmVpdG8gZGUgcmVwcm9kdXppciwgdHJhZHV6aXIsIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KZSkgVm9jw6ogY29uY29yZGEgcXVlIG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZQQiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgpmKSBWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRlBCIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLgoKRG9zIEVtYmFyZ29zIGUgUmVzdHJpw6fDtWVzIGRlIEFjZXNzbwpPIGVtYmFyZ28gcG9kZXLDoSBzZXIgbWFudGlkbyBwb3IgYXTDqSAxICh1bSkgYW5vLCBwb2RlbmRvIHNlciBwcm9ycm9nYWRvIHBvciBpZ3VhbCBwZXLDrW9kbywgY29tIGEgbmVjZXNzaWRhZGUgZGUgYW5leGFyIGRvY3VtZW50b3MgY29tcHJvYmF0w7NyaW9zLiBPIHJlc3VtbyBlIG9zIG1ldGFkYWRvcyBkZXNjcml0aXZvcyBzZXLDo28gZGlzcG9uaWJpbGl6YWRvcyBubyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRlBCLgpPIGRlcMOzc2l0byBkbyB0cmFiYWxobyDDqSBvYnJpZ2F0w7NyaW8sIGluZGVwZW5kZW50ZSBkbyBlbWJhcmdvLgpRdWFuZG8gZW1iYXJnYWRvLCBvIHRyYWJhbGhvIHBlcm1hbmVjZXLDoSBpbmRpc3BvbsOtdmVsIGVucXVhbnRvIHZpZ29yYXIgYXMgcmVzdHJpw6fDtWVzLiBQYXNzYWRvIG8gcGVyw61vZG8gZG8gZW1iYXJnbywgbyB0cmFiYWxobyBzZXLDoSBhdXRvbWF0aWNhbWVudGUgZGlzcG9uaWJpbGl6YWRvIG5vIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEIuIAo=Repositório InstitucionalPUB
dc.title.pt_BR.fl_str_mv Produção de nanofibras pelas técnicas de Solution Blow Spinning (SBS) e Supersonic Solution Blowing (SSB) e suas aplicações para conversão e armazenamento de energia
title Produção de nanofibras pelas técnicas de Solution Blow Spinning (SBS) e Supersonic Solution Blowing (SSB) e suas aplicações para conversão e armazenamento de energia
spellingShingle Produção de nanofibras pelas técnicas de Solution Blow Spinning (SBS) e Supersonic Solution Blowing (SSB) e suas aplicações para conversão e armazenamento de energia
Silva, Vinícius Dias
CNPQ::ENGENHARIAS
Nanofibras de carbono
Baterias de íons de lítio
Hidrogênio verde
Solution Blow Spinning - SBS
Eletrocatálise
Carbon nanofibers
Lithium Ion batteries
Green hydrogen
Electrocatalysis
title_short Produção de nanofibras pelas técnicas de Solution Blow Spinning (SBS) e Supersonic Solution Blowing (SSB) e suas aplicações para conversão e armazenamento de energia
title_full Produção de nanofibras pelas técnicas de Solution Blow Spinning (SBS) e Supersonic Solution Blowing (SSB) e suas aplicações para conversão e armazenamento de energia
title_fullStr Produção de nanofibras pelas técnicas de Solution Blow Spinning (SBS) e Supersonic Solution Blowing (SSB) e suas aplicações para conversão e armazenamento de energia
title_full_unstemmed Produção de nanofibras pelas técnicas de Solution Blow Spinning (SBS) e Supersonic Solution Blowing (SSB) e suas aplicações para conversão e armazenamento de energia
title_sort Produção de nanofibras pelas técnicas de Solution Blow Spinning (SBS) e Supersonic Solution Blowing (SSB) e suas aplicações para conversão e armazenamento de energia
author Silva, Vinícius Dias
author_facet Silva, Vinícius Dias
author_role author
dc.contributor.advisor1.fl_str_mv Medeiros, Eliton Souto de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7096228449228489
dc.contributor.advisor-co1.fl_str_mv Macedo, Daniel Araújo de
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/1027496814443777
dc.contributor.authorID.fl_str_mv 00983479429
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5613831898438810
dc.contributor.author.fl_str_mv Silva, Vinícius Dias
contributor_str_mv Medeiros, Eliton Souto de
Macedo, Daniel Araújo de
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
topic CNPQ::ENGENHARIAS
Nanofibras de carbono
Baterias de íons de lítio
Hidrogênio verde
Solution Blow Spinning - SBS
Eletrocatálise
Carbon nanofibers
Lithium Ion batteries
Green hydrogen
Electrocatalysis
dc.subject.por.fl_str_mv Nanofibras de carbono
Baterias de íons de lítio
Hidrogênio verde
Solution Blow Spinning - SBS
Eletrocatálise
Carbon nanofibers
Lithium Ion batteries
Green hydrogen
Electrocatalysis
description Uma rápida transição energética para fontes menos poluidoras, como demanda a urgência global, não será impulsionada por uma única tecnologia em particular. É preciso que todas as tecnologias disponíveis evoluam para satisfazer a necessidade de cada demanda do ecossistema energético, isto é, da conversão, armazenamento, e distribuição de energia. Dessa forma, é imprescindível que meios intermitentes de conversão de energia como a eólica e a solar, estejam trabalhando de forma integrada com sistemas de redes avançadas de armazenamento, tais como supercapacitores e baterias. Na outra linha ação, o hidrogênio (H2) verde tem sido considerado como uma das mais promissoras fontes de combustível renovável para atender à crescente demanda global. Entre os métodos de produção do H2 verde, a rota através da eletrólise da água é capaz de produzir H2 de alta pureza e de forma totalmente sustentável. Nesta tese, nós desenvolvemos um estudo utilizando duas técnicas o Solution Blow Spinning (SBS) e o Supersonic Solution Blowing (SSB) na produção de nanofibras para serem aplicadas como materiais de eletrodos na catálise heterogênea e, como eletrodos de dispositivos de armazenamento de energia eletroquímica (supercapacitores, eletrodos tipo bateria, anodos de íons de lítio). Focando na possível aplicação em larga escala, as razões e os momentos em que as técnicas devem ser aplicadas foram discutidas. Assim como também, foi sintetizado nanofibras à base de materiais abundantes e de baixo custo com boas propriedades eletroquímicas, tais como, carbono e metais de transição, que possam vir a substituir os metais nobres, que encarecem as tecnologias atuais. Como resultados, foi introduzido com sucesso um estudo inédito para à obtenção de nanofibras ocas, e quando aplicado na produção de nanofibras de óxidos à base de Ni/Ce, possibilitou obter eletrodos do tipo-bateria com capacidade superior à de outros trabalhos reportados. E, nanofibras de óxidos de alta entropia produzidas pela primeira vez pela técnica SBS, foram usadas diretamente como eletrocatalisadores, revelando desempenho catalítico global (atividade e estabilidade) aplicáveis. Aqui, foi demonstrado que nanofibras de carbono como suporte para nanopartículas atuares como centros ativos catalítico, é uma estratégia altamente racional para o desenvolvimento de eletrodos autossuportados duráveis, uma vez que impede a desativação e degradação por coalescência. Nanofibras de carbono (micro e mesoporosas) com ultra-alta área superficial acima de 4000 m2/g também foram obtidas, revelando alto desempenho como supercapacitores de dupla camada elétrica. E, foi proposto pela primeira vez na literatura, um coeficiente fundamental de área-diâmetro do eletrodo fibrilar [FEADC, em m2/(g nm)], que unifica os parâmetros diâmetro das nanofibras e área superficial, onde foi argumentado e sugerido que este coeficiente seja implementado na análise de eletrodos de supercapacitores nanofibrosos. Quando essas mesmas nanofibras de ultra-alta área superficial foram aplicadas como anodo para baterias de íons de lítio, apresentaram valores de capacidade superior à teórica do grafite, que é o material de eletrodo usado nas baterias de íons de lítio comerciais. Em suma, a aplicação das técnicas SBS e SSB foram exploradas com sucesso no design de eletrodos nanofibrosos autossuportados para dispositivos de conversão e armazenamento de energia eletroquímica.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-05-22T18:22:09Z
dc.date.available.fl_str_mv 2023-05-22T18:22:09Z
2024-03-21
dc.date.issued.fl_str_mv 2023-02-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/26994
url https://repositorio.ufpb.br/jspui/handle/123456789/26994
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Engenharia de Materiais
dc.publisher.initials.fl_str_mv UFPB
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Engenharia de Materiais
publisher.none.fl_str_mv Universidade Federal da Paraíba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Repositório Institucional da UFPB
collection Repositório Institucional da UFPB
bitstream.url.fl_str_mv https://repositorio.ufpb.br/jspui/bitstream/123456789/26994/4/Vin%c3%adciusDiasSilva_Tese.pdf.txt
https://repositorio.ufpb.br/jspui/bitstream/123456789/26994/3/license.txt
https://repositorio.ufpb.br/jspui/bitstream/123456789/26994/2/license_rdf
https://repositorio.ufpb.br/jspui/bitstream/123456789/26994/1/Vin%c3%adciusDiasSilva_Tese.pdf
bitstream.checksum.fl_str_mv 534b5ddca4e50661e92a755485b9e1df
e20ac18e101915e6935b82a641b985c0
c4c98de35c20c53220c07884f4def27c
b6f630574c948a2c2476e2a0fbe76b04
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777562291574669312