Biodigestor anaeróbico na agricultura familiar: produção de biogás e biofertilizante a partir de resíduos pecuários e implantação de cultivo de microalgas

Detalhes bibliográficos
Autor(a) principal: Lira, Evandro Bernardo de
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/123456789/26172
Resumo: As pesquisas com energias renováveis têm crescido significativamente ao longo dos anos, por gerarem energia limpa e sustentável, buscando reduzir ou substituir os combustíveis fosseis. Pois são os grandes responsáveis pela emissão de gases do efeito estufa e de outros problemas ambientais. Outro fator que influencia esses impactos ambientais, é o descarte inadequado de resíduos agropecuários no solo e corpos hídricos, como os dejetos de suínos e aves. Diante desse cenário, a produção de biogás utilizando esses resíduos que são abundantes e tem um grande potencial energético, surge como uma solução viável para os produtores rurais da agricultura familiar, promovendo uma fonte de energia alternativa, diminuindo o consumo de combustíveis fosseis e danos ambientais, gerando biofertilizante que pode ser utilizado na agricultura ou no cultivo de microalgas. Neste sentido, foram desenvolvidos três biodigestores anaeróbicos caseiros, que foram alimentados com estercos de suínos, avícola, e uma mistura binária (esterco suíno e avícola). Determinou-se a produção de biogás e a composição dos gases CH4, CO2, H2S e NH3, os parâmetros de temperatura e de pH, além de análises de sólidos totais, fixos e voláteis. A maior produção de biogás foi gerada pelo biodigestor com resíduo suíno (BS) de 3,747 m3 no período de 38 dias, seguida pelo biodigestor com resíduo de suíno e de ave (BB) de 3,726 m3 em 56 dias, e a menor produção foi para o biodigestor com resíduo de ave (BA) com 0,650 m3 em 35 dias. Os biodigestores apresentaram temperatura máxima de 33,33 °C e mínima de 26,59 °C, com uma temperatura média de 30,76 °C. O pH variou de 7 a 7,5, de 7 a 8 e 6,8 a 6, para o BS, BB e BA, respectivamente. O BS apresentou concentrações de CH4 que variou de 65% a 81%. O BA apresentou concentrações de CH4 que variou de 60% a 43%. E o BB apresentou concentrações de CH4 que variou de 68% a 80%. O BS apresentou a maior produção de biogás e metano com relação aos sólidos voláteis (SV) reduzidos do volume total dos biodigestores, que foi de 804,8 L/kg SV de biogás e de 572,2 L/kg SV de metano. Seguido pelo BB com 626,0 L/kg SV de biogás e 457,6 L/kg SV de metano, e os menores valores foram relatados no BA com 522,8 L/kg SV de biogás e 259,4 L/kg SV de metano. Foi realizado outro ensaio com o esterco de ave para corrigir o pH, o BAC produziu 2,196m3 de biogás em 56 dias, ou seja, 3,3 vezes mais que o BA sem correção, e o pH variou 6,8 a 7,2. O BAC obteve produção de biogás de 1102,4 e de metano 628,5 L/kg de SVr. Os meios sintetizados com os biofertilizantes gerados pelos biodigestores evidenciaram eficiência para o cultivo das microalgas Monoraphidium contortum, Golenkinia radiata e Chlorella sp. A purificação do biogás no cultivo da microalga Chlorella sp. apresentou eficiência de remoção de 20,5±1,6 a 53,8±3,3% dependendo da concentração de CO2 no biogás, e os valores do poder calorífico variou de 24702 a 32578 kJ m-3. Ficando próximo do valor do metano puro que é de 35800 kJ m-3, mostrando que o processo de purificação de CO2 através de cultivo da Chlorella sp. é viável para aumentar a pureza do biogás. O cultivo da Chlorella sp. com adição de biogás aumentou a concentração de biomassa algal e do teor de PT, CT e LT com relação ao ensaio controle e ao meio alternativo sem adição de biogás. Mostrando o grande potencial de geração de biogás pelos biodigestores utilizando os dejetos agropecuários, e dos meios alternativos sintetizados a partir dos biofertilizantes e da adição de biogás para a produção de microalgas, podendo ser implantado na agricultura familiar.
id UFPB-2_f49cec416a5acdfa279a0cce6243d2a7
oai_identifier_str oai:repositorio.ufpb.br:123456789/26172
network_acronym_str UFPB-2
network_name_str Repositório Institucional da UFPB
repository_id_str
spelling 2023-02-06T16:32:44Z2021-11-102023-02-06T16:32:44Z2021-08-30https://repositorio.ufpb.br/jspui/handle/123456789/26172As pesquisas com energias renováveis têm crescido significativamente ao longo dos anos, por gerarem energia limpa e sustentável, buscando reduzir ou substituir os combustíveis fosseis. Pois são os grandes responsáveis pela emissão de gases do efeito estufa e de outros problemas ambientais. Outro fator que influencia esses impactos ambientais, é o descarte inadequado de resíduos agropecuários no solo e corpos hídricos, como os dejetos de suínos e aves. Diante desse cenário, a produção de biogás utilizando esses resíduos que são abundantes e tem um grande potencial energético, surge como uma solução viável para os produtores rurais da agricultura familiar, promovendo uma fonte de energia alternativa, diminuindo o consumo de combustíveis fosseis e danos ambientais, gerando biofertilizante que pode ser utilizado na agricultura ou no cultivo de microalgas. Neste sentido, foram desenvolvidos três biodigestores anaeróbicos caseiros, que foram alimentados com estercos de suínos, avícola, e uma mistura binária (esterco suíno e avícola). Determinou-se a produção de biogás e a composição dos gases CH4, CO2, H2S e NH3, os parâmetros de temperatura e de pH, além de análises de sólidos totais, fixos e voláteis. A maior produção de biogás foi gerada pelo biodigestor com resíduo suíno (BS) de 3,747 m3 no período de 38 dias, seguida pelo biodigestor com resíduo de suíno e de ave (BB) de 3,726 m3 em 56 dias, e a menor produção foi para o biodigestor com resíduo de ave (BA) com 0,650 m3 em 35 dias. Os biodigestores apresentaram temperatura máxima de 33,33 °C e mínima de 26,59 °C, com uma temperatura média de 30,76 °C. O pH variou de 7 a 7,5, de 7 a 8 e 6,8 a 6, para o BS, BB e BA, respectivamente. O BS apresentou concentrações de CH4 que variou de 65% a 81%. O BA apresentou concentrações de CH4 que variou de 60% a 43%. E o BB apresentou concentrações de CH4 que variou de 68% a 80%. O BS apresentou a maior produção de biogás e metano com relação aos sólidos voláteis (SV) reduzidos do volume total dos biodigestores, que foi de 804,8 L/kg SV de biogás e de 572,2 L/kg SV de metano. Seguido pelo BB com 626,0 L/kg SV de biogás e 457,6 L/kg SV de metano, e os menores valores foram relatados no BA com 522,8 L/kg SV de biogás e 259,4 L/kg SV de metano. Foi realizado outro ensaio com o esterco de ave para corrigir o pH, o BAC produziu 2,196m3 de biogás em 56 dias, ou seja, 3,3 vezes mais que o BA sem correção, e o pH variou 6,8 a 7,2. O BAC obteve produção de biogás de 1102,4 e de metano 628,5 L/kg de SVr. Os meios sintetizados com os biofertilizantes gerados pelos biodigestores evidenciaram eficiência para o cultivo das microalgas Monoraphidium contortum, Golenkinia radiata e Chlorella sp. A purificação do biogás no cultivo da microalga Chlorella sp. apresentou eficiência de remoção de 20,5±1,6 a 53,8±3,3% dependendo da concentração de CO2 no biogás, e os valores do poder calorífico variou de 24702 a 32578 kJ m-3. Ficando próximo do valor do metano puro que é de 35800 kJ m-3, mostrando que o processo de purificação de CO2 através de cultivo da Chlorella sp. é viável para aumentar a pureza do biogás. O cultivo da Chlorella sp. com adição de biogás aumentou a concentração de biomassa algal e do teor de PT, CT e LT com relação ao ensaio controle e ao meio alternativo sem adição de biogás. Mostrando o grande potencial de geração de biogás pelos biodigestores utilizando os dejetos agropecuários, e dos meios alternativos sintetizados a partir dos biofertilizantes e da adição de biogás para a produção de microalgas, podendo ser implantado na agricultura familiar.Researches on renewable energies has grown significantly over the years, as they generate clean and sustainable energy, seeking to reduce or replace fossil fuels. Because they are largely responsible for the emission of greenhouse gases and other environmental problems. Another problem that influences these environmental impacts is the inadequate discard of agricultural residues in the soil and water bodies, such as swine and poultry manure. Given this scenario, the production of biogas using these wastes, which are abundant and have great energy potential, emerges as a viable solution for rural family farmers, promoting an alternative energy source, reducing fossil fuel consumption and environmental damage generating biofertilizer that can be used in agriculture or in the cultivation of microalgae. In this sense, three homemade anaerobic digesters were developed, which were fed with swine and poultry manure and a binary mixture (swine and poultry manure). Biogas production and composition of CH4, CO2, H2S and NH3 gases, temperature and pH parameters were determined, as well as analysis of total solids, fixed and volatiles. The largest production of biogas was generated by the BS of 3.747 m3 in a period of 38 days, followed by the BB of 3.726 m3 in 56 days, and the lowest production was for BA with 0.650 m3 in 35 days. The biodigesters had a maximum temperature of 33.33 °C and a minimum of 26.59 °C, with an average temperature of 30.76 °C. The pH ranged from 7 to 7.5, from 7 to 8 and 6.8 to 6, for BS, BB and BA, respectively. The BS had CH4 concentrations ranging from 65% to 81%. The BA showed concentrations of CH4 that ranged from 60% to 43%. And BB had CH4 concentrations ranging from 68% to 80%. The BS showed the highest production of biogas and methane in relation to the reduced SV of the total volume of the biodigesters, which was 804.8 L/kg SV of biogas and 572.2 L/kg SV of methane. Followed by BB with 626.0 L/kg SV of biogas and 457.6 L/kg SV of methane, and the lowest values were reported in BA with 522.8 L/kg SV of biogas and 259.4 L/kg SV of methane. Another test was carried out with the poultry manure to correct the pH, the BAC produced 2.196m3 of biogas, that is, 3.3 times more than the uncorrected BA, and the pH ranged from 6.8 to 7.2. BAC obtained biogas production of 1102.4 and methane 628.5 L/kg of SVr. The media synthesized with the biofertilizers generated by the biodigesters showed efficiency for the cultivation of the microalgae Monoraphidium contortum, Golenkinia radiata and Chlorella sp. The purification of biogas in the cultivation of the microalgae Chlorella sp. showed removal efficiency from 20.5±1.6 to 53.8±3.3% depending on the concentration of CO2 in the biogas, and the calorific value ranged from 24702 to 32578 kJ m-3. Being close to the value of pure methane, which is 35800 kJ m-3, showing that the process of purification of CO2 through the cultivation of Chlorella sp. it is feasible to increase the purity of the biogas. The cultivation of Chlorella sp. with addition of biogas increased the concentration of algal biomass and the content of PT, CT and LT compared to the control trial and the alternative medium without addition of biogas. Showing the great potential of biogas generation by biodigesters using agricultural waste, and alternative means synthesized from biofertilizers and the addition of biogas for the production of microalgae, which can be implemented in family farming.Submitted by Fernando Augusto Alves Vieira (fernandovieira@biblioteca.ufpb.br) on 2023-02-02T16:45:03Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) EvandroBernardoDeLira_Dissert.pdf: 3062354 bytes, checksum: 4ff8120310146495d0ed0d8a3da8b848 (MD5)Approved for entry into archive by Biblioteca Digital de Teses e Dissertações BDTD (bdtd@biblioteca.ufpb.br) on 2023-02-06T16:32:44Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) EvandroBernardoDeLira_Dissert.pdf: 3062354 bytes, checksum: 4ff8120310146495d0ed0d8a3da8b848 (MD5)Made available in DSpace on 2023-02-06T16:32:44Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) EvandroBernardoDeLira_Dissert.pdf: 3062354 bytes, checksum: 4ff8120310146495d0ed0d8a3da8b848 (MD5) Previous issue date: 2021-08-30Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqporUniversidade Federal da ParaíbaPrograma de Pós-Graduação em Energias RenováveisUFPBBrasilEngenharia de Energias RenováveisAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::ENGENHARIASEnergia renovávelDejetos biodigestoresMicroalgasAgricultura familiarRenewable energyBiodigesters wasteMicroalgaeFamily farmingBiodigestor anaeróbico na agricultura familiar: produção de biogás e biofertilizante a partir de resíduos pecuários e implantação de cultivo de microalgasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisSilva, Marta Célia Dantashttp://lattes.cnpq.br/6057795603782162Lopes, Riuzuani Michelle Bezerra Pedrosahttp://lattes.cnpq.br/6408186920914457Pereira, Darlan Azevedohttp://lattes.cnpq.br/121544154756494007413303426http://lattes.cnpq.br/9539496427575137Lira, Evandro Bernardo dereponame:Repositório Institucional da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPBTEXTEvandroBernardoDeLira_Dissert.pdf.txtEvandroBernardoDeLira_Dissert.pdf.txtExtracted texttext/plain205155https://repositorio.ufpb.br/jspui/bitstream/123456789/26172/4/EvandroBernardoDeLira_Dissert.pdf.txt890942e47fe13336a5c30275fca5ba5bMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82390https://repositorio.ufpb.br/jspui/bitstream/123456789/26172/3/license.txte20ac18e101915e6935b82a641b985c0MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.ufpb.br/jspui/bitstream/123456789/26172/2/license_rdfc4c98de35c20c53220c07884f4def27cMD52ORIGINALEvandroBernardoDeLira_Dissert.pdfEvandroBernardoDeLira_Dissert.pdfapplication/pdf3062354https://repositorio.ufpb.br/jspui/bitstream/123456789/26172/1/EvandroBernardoDeLira_Dissert.pdf4ff8120310146495d0ed0d8a3da8b848MD51123456789/261722023-02-07 03:05:24.941QVVUT1JJWkHDh8ODTyBFIExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpBdXRvcml6byBlIGVzdG91IGRlIGFjb3JkbywgbmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbyBhdXRvLWRlcG9zaXRhZGEsIGNvbmZvcm1lIExlaSBuwrogOTYxMC85OCwgb3Mgc2VndWludGVzIHRlcm1vczoKIApEYSBEaXN0cmlidWnDp8OjbyBuw6NvLWV4Y2x1c2l2YSAKTyBhdXRvciBkZWNsYXJhIHF1ZTogCmEpIE8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0ZSB0ZXJtby4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50byBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuIApiKSBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSBjb250w6ltIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBwYXJhIGNvbmNlZGVyIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgUGFyYcOtYmEgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0ZSB0ZXJtbywgZSBxdWUgZXNzZSBtYXRlcmlhbCBjdWpvcyBkaXJlaXRvcyBzw6NvIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IGNvbnRlw7pkbyBkbyB0cmFiYWxobyBlbnRyZWd1ZS4gCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIGJhc2VhZG8gZW0gdHJhYmFsaG8gZmluYW5jaWFkbyBvdSBhcG9pYWRvIHBvciBvdXRyYSBpbnN0aXR1acOnw6NvIHF1ZSBuw6NvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgUGFyYcOtYmEgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCmQpIENvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZQQiBvIGRpcmVpdG8gZGUgcmVwcm9kdXppciwgdHJhZHV6aXIsIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KZSkgVm9jw6ogY29uY29yZGEgcXVlIG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZQQiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgpmKSBWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRlBCIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLgoKRG9zIEVtYmFyZ29zIGUgUmVzdHJpw6fDtWVzIGRlIEFjZXNzbwpPIGVtYmFyZ28gcG9kZXLDoSBzZXIgbWFudGlkbyBwb3IgYXTDqSAxICh1bSkgYW5vLCBwb2RlbmRvIHNlciBwcm9ycm9nYWRvIHBvciBpZ3VhbCBwZXLDrW9kbywgY29tIGEgbmVjZXNzaWRhZGUgZGUgYW5leGFyIGRvY3VtZW50b3MgY29tcHJvYmF0w7NyaW9zLiBPIHJlc3VtbyBlIG9zIG1ldGFkYWRvcyBkZXNjcml0aXZvcyBzZXLDo28gZGlzcG9uaWJpbGl6YWRvcyBubyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRlBCLgpPIGRlcMOzc2l0byBkbyB0cmFiYWxobyDDqSBvYnJpZ2F0w7NyaW8sIGluZGVwZW5kZW50ZSBkbyBlbWJhcmdvLgpRdWFuZG8gZW1iYXJnYWRvLCBvIHRyYWJhbGhvIHBlcm1hbmVjZXLDoSBpbmRpc3BvbsOtdmVsIGVucXVhbnRvIHZpZ29yYXIgYXMgcmVzdHJpw6fDtWVzLiBQYXNzYWRvIG8gcGVyw61vZG8gZG8gZW1iYXJnbywgbyB0cmFiYWxobyBzZXLDoSBhdXRvbWF0aWNhbWVudGUgZGlzcG9uaWJpbGl6YWRvIG5vIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEIuIAo=Repositório InstitucionalPUB
dc.title.pt_BR.fl_str_mv Biodigestor anaeróbico na agricultura familiar: produção de biogás e biofertilizante a partir de resíduos pecuários e implantação de cultivo de microalgas
title Biodigestor anaeróbico na agricultura familiar: produção de biogás e biofertilizante a partir de resíduos pecuários e implantação de cultivo de microalgas
spellingShingle Biodigestor anaeróbico na agricultura familiar: produção de biogás e biofertilizante a partir de resíduos pecuários e implantação de cultivo de microalgas
Lira, Evandro Bernardo de
CNPQ::ENGENHARIAS
Energia renovável
Dejetos biodigestores
Microalgas
Agricultura familiar
Renewable energy
Biodigesters waste
Microalgae
Family farming
title_short Biodigestor anaeróbico na agricultura familiar: produção de biogás e biofertilizante a partir de resíduos pecuários e implantação de cultivo de microalgas
title_full Biodigestor anaeróbico na agricultura familiar: produção de biogás e biofertilizante a partir de resíduos pecuários e implantação de cultivo de microalgas
title_fullStr Biodigestor anaeróbico na agricultura familiar: produção de biogás e biofertilizante a partir de resíduos pecuários e implantação de cultivo de microalgas
title_full_unstemmed Biodigestor anaeróbico na agricultura familiar: produção de biogás e biofertilizante a partir de resíduos pecuários e implantação de cultivo de microalgas
title_sort Biodigestor anaeróbico na agricultura familiar: produção de biogás e biofertilizante a partir de resíduos pecuários e implantação de cultivo de microalgas
author Lira, Evandro Bernardo de
author_facet Lira, Evandro Bernardo de
author_role author
dc.contributor.advisor1.fl_str_mv Silva, Marta Célia Dantas
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6057795603782162
dc.contributor.advisor-co1.fl_str_mv Lopes, Riuzuani Michelle Bezerra Pedrosa
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6408186920914457
dc.contributor.advisor-co2.fl_str_mv Pereira, Darlan Azevedo
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/1215441547564940
dc.contributor.authorID.fl_str_mv 07413303426
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9539496427575137
dc.contributor.author.fl_str_mv Lira, Evandro Bernardo de
contributor_str_mv Silva, Marta Célia Dantas
Lopes, Riuzuani Michelle Bezerra Pedrosa
Pereira, Darlan Azevedo
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
topic CNPQ::ENGENHARIAS
Energia renovável
Dejetos biodigestores
Microalgas
Agricultura familiar
Renewable energy
Biodigesters waste
Microalgae
Family farming
dc.subject.por.fl_str_mv Energia renovável
Dejetos biodigestores
Microalgas
Agricultura familiar
Renewable energy
Biodigesters waste
Microalgae
Family farming
description As pesquisas com energias renováveis têm crescido significativamente ao longo dos anos, por gerarem energia limpa e sustentável, buscando reduzir ou substituir os combustíveis fosseis. Pois são os grandes responsáveis pela emissão de gases do efeito estufa e de outros problemas ambientais. Outro fator que influencia esses impactos ambientais, é o descarte inadequado de resíduos agropecuários no solo e corpos hídricos, como os dejetos de suínos e aves. Diante desse cenário, a produção de biogás utilizando esses resíduos que são abundantes e tem um grande potencial energético, surge como uma solução viável para os produtores rurais da agricultura familiar, promovendo uma fonte de energia alternativa, diminuindo o consumo de combustíveis fosseis e danos ambientais, gerando biofertilizante que pode ser utilizado na agricultura ou no cultivo de microalgas. Neste sentido, foram desenvolvidos três biodigestores anaeróbicos caseiros, que foram alimentados com estercos de suínos, avícola, e uma mistura binária (esterco suíno e avícola). Determinou-se a produção de biogás e a composição dos gases CH4, CO2, H2S e NH3, os parâmetros de temperatura e de pH, além de análises de sólidos totais, fixos e voláteis. A maior produção de biogás foi gerada pelo biodigestor com resíduo suíno (BS) de 3,747 m3 no período de 38 dias, seguida pelo biodigestor com resíduo de suíno e de ave (BB) de 3,726 m3 em 56 dias, e a menor produção foi para o biodigestor com resíduo de ave (BA) com 0,650 m3 em 35 dias. Os biodigestores apresentaram temperatura máxima de 33,33 °C e mínima de 26,59 °C, com uma temperatura média de 30,76 °C. O pH variou de 7 a 7,5, de 7 a 8 e 6,8 a 6, para o BS, BB e BA, respectivamente. O BS apresentou concentrações de CH4 que variou de 65% a 81%. O BA apresentou concentrações de CH4 que variou de 60% a 43%. E o BB apresentou concentrações de CH4 que variou de 68% a 80%. O BS apresentou a maior produção de biogás e metano com relação aos sólidos voláteis (SV) reduzidos do volume total dos biodigestores, que foi de 804,8 L/kg SV de biogás e de 572,2 L/kg SV de metano. Seguido pelo BB com 626,0 L/kg SV de biogás e 457,6 L/kg SV de metano, e os menores valores foram relatados no BA com 522,8 L/kg SV de biogás e 259,4 L/kg SV de metano. Foi realizado outro ensaio com o esterco de ave para corrigir o pH, o BAC produziu 2,196m3 de biogás em 56 dias, ou seja, 3,3 vezes mais que o BA sem correção, e o pH variou 6,8 a 7,2. O BAC obteve produção de biogás de 1102,4 e de metano 628,5 L/kg de SVr. Os meios sintetizados com os biofertilizantes gerados pelos biodigestores evidenciaram eficiência para o cultivo das microalgas Monoraphidium contortum, Golenkinia radiata e Chlorella sp. A purificação do biogás no cultivo da microalga Chlorella sp. apresentou eficiência de remoção de 20,5±1,6 a 53,8±3,3% dependendo da concentração de CO2 no biogás, e os valores do poder calorífico variou de 24702 a 32578 kJ m-3. Ficando próximo do valor do metano puro que é de 35800 kJ m-3, mostrando que o processo de purificação de CO2 através de cultivo da Chlorella sp. é viável para aumentar a pureza do biogás. O cultivo da Chlorella sp. com adição de biogás aumentou a concentração de biomassa algal e do teor de PT, CT e LT com relação ao ensaio controle e ao meio alternativo sem adição de biogás. Mostrando o grande potencial de geração de biogás pelos biodigestores utilizando os dejetos agropecuários, e dos meios alternativos sintetizados a partir dos biofertilizantes e da adição de biogás para a produção de microalgas, podendo ser implantado na agricultura familiar.
publishDate 2021
dc.date.available.fl_str_mv 2021-11-10
2023-02-06T16:32:44Z
dc.date.issued.fl_str_mv 2021-08-30
dc.date.accessioned.fl_str_mv 2023-02-06T16:32:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/26172
url https://repositorio.ufpb.br/jspui/handle/123456789/26172
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Energias Renováveis
dc.publisher.initials.fl_str_mv UFPB
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Engenharia de Energias Renováveis
publisher.none.fl_str_mv Universidade Federal da Paraíba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Repositório Institucional da UFPB
collection Repositório Institucional da UFPB
bitstream.url.fl_str_mv https://repositorio.ufpb.br/jspui/bitstream/123456789/26172/4/EvandroBernardoDeLira_Dissert.pdf.txt
https://repositorio.ufpb.br/jspui/bitstream/123456789/26172/3/license.txt
https://repositorio.ufpb.br/jspui/bitstream/123456789/26172/2/license_rdf
https://repositorio.ufpb.br/jspui/bitstream/123456789/26172/1/EvandroBernardoDeLira_Dissert.pdf
bitstream.checksum.fl_str_mv 890942e47fe13336a5c30275fca5ba5b
e20ac18e101915e6935b82a641b985c0
c4c98de35c20c53220c07884f4def27c
4ff8120310146495d0ed0d8a3da8b848
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777562281743220736