Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/tede/6544 |
Resumo: | Traffic accidents represent, in Brazil, a serious economic and especially social, relevant for magnitude of the mortality and number of people suffering from sequelae arising, thus becoming a serious public health problem. This research aimed to develop a model to support decision making based on fuzzy logic, supported by analyzes spatial and spatio-temporal (Scan method) to categorize neighborhoods according to priority intervention for prevention and control of traffic accidents that produce victims. Secondary data were georeferenced and recorded by Mobile Emergency Care Service in João Pessoa, Paraíba, in the years 2010 and 2011. Throughout study period, João Pessoa was 10,070 traffic accidents with victims. Of this total, 17.8% had breath ethanol and 0.8% died at the scene. The majority of victims were male (74.5%), belonging to the age group 20-29 years (37.7%). The accidents occurred mainly on Sundays (19.2%), Saturdays (18.7%) and on Fridays (14.4%) as well as in the months of December (10%), October (9.8% ) and May (8.9%). Most of the vehicles involved was composed by motorcycles (68.1%) and cars (36.5%). The nature of accident, collision was more frequent (46.2%), followed by fall motorcycle (30.7%) and pedestrian injuries (11.1%). In analysis of the relative risk and spatial distribution of these events, it was found that neighborhoods with high relative risk and formed significant spatial clusters concentrated in the north, northwest and northeast of the municipality. We identified 15 clusters space-time, which concentrated mainly in the northern, northeastern and coastal strip of the municipality. It was observed that neighborhoods reported by Mobile Emergency Care Service were categorized as priority by model, Valentina and Mandacaru were categorized as with tendency to priority, and Mangabeira was categorized as non-priority. The proposed decision model showed good agreement when compared with Mobile Emergency Care Service, thus satisfying the identification and classification of neighborhoods as a priority, with tendency to priority, with tendency to non-priority and non-priority. The results may be of relevance to both Mobile Emergency Care Service as to other public officials linked to road traffic, traffic education and care for victims produced by road traffic in João Pessoa. |
id |
UFPB_0333028bc06c0a728ce9949080f66b97 |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:tede/6544 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.Saúde públicaAcidentes de trânsitoLógica fuzzyTraffic accidentSpatiotemporal clusterFuzzy logicCIENCIAS DA SAUDE::SAUDE COLETIVATraffic accidents represent, in Brazil, a serious economic and especially social, relevant for magnitude of the mortality and number of people suffering from sequelae arising, thus becoming a serious public health problem. This research aimed to develop a model to support decision making based on fuzzy logic, supported by analyzes spatial and spatio-temporal (Scan method) to categorize neighborhoods according to priority intervention for prevention and control of traffic accidents that produce victims. Secondary data were georeferenced and recorded by Mobile Emergency Care Service in João Pessoa, Paraíba, in the years 2010 and 2011. Throughout study period, João Pessoa was 10,070 traffic accidents with victims. Of this total, 17.8% had breath ethanol and 0.8% died at the scene. The majority of victims were male (74.5%), belonging to the age group 20-29 years (37.7%). The accidents occurred mainly on Sundays (19.2%), Saturdays (18.7%) and on Fridays (14.4%) as well as in the months of December (10%), October (9.8% ) and May (8.9%). Most of the vehicles involved was composed by motorcycles (68.1%) and cars (36.5%). The nature of accident, collision was more frequent (46.2%), followed by fall motorcycle (30.7%) and pedestrian injuries (11.1%). In analysis of the relative risk and spatial distribution of these events, it was found that neighborhoods with high relative risk and formed significant spatial clusters concentrated in the north, northwest and northeast of the municipality. We identified 15 clusters space-time, which concentrated mainly in the northern, northeastern and coastal strip of the municipality. It was observed that neighborhoods reported by Mobile Emergency Care Service were categorized as priority by model, Valentina and Mandacaru were categorized as with tendency to priority, and Mangabeira was categorized as non-priority. The proposed decision model showed good agreement when compared with Mobile Emergency Care Service, thus satisfying the identification and classification of neighborhoods as a priority, with tendency to priority, with tendency to non-priority and non-priority. The results may be of relevance to both Mobile Emergency Care Service as to other public officials linked to road traffic, traffic education and care for victims produced by road traffic in João Pessoa.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESOs acidentes de trânsito representam, no Brasil, um grave problema econômico e principalmente social, relevante pela magnitude da mortalidade e do número de pessoas portadoras de sequelas decorrentes, tornando-se assim um grave problema de saúde pública. Este trabalho objetivou elaborar um modelo de apoio à tomada de decisão baseado em lógica fuzzy, apoiado pelas análises espacial e espaço-temporal (método Scan), para categorizar os bairros de acordo com o grau de prioridade de intervenção para a prevenção e combate dos acidentes de trânsito que produzam vítimas. Foram utilizados dados secundários georreferenciados e registrados pelo Serviço de Atendimento Móvel de Urgência na cidade de João Pessoa, Paraíba, nos anos 2010 e 2011. Ao longo do período de estudo, João Pessoa apresentou 10.070 ocorrências de AT com vítimas. Deste total, 17,8% apresentaram hálito etílico e 0,8% morreram no local do acidente. A maioria das vítimas foi do sexo masculino (74,5%), pertencente à faixa etária de 20 a 29 anos (37,7%). Os acidentes ocorreram principalmente aos domingos (19,2%), aos sábados (18,7%) e às sextas-feiras (14,4%), bem como nos meses de dezembro (10%), outubro (9,8%) e maio (8,9%). A maioria dos veículos envolvidos foi composta por motocicletas (68,1%) e carros (36,5%). Quanto à natureza do acidente, a colisão foi mais frequente (46,2%), seguida por queda de motocicleta (30,7%) e atropelamento (11,1%). Na análise do risco relativo e da distribuição espacial destes eventos, verificou-se que os bairros com alto risco relativo e que formaram conglomerados espaciais significativos concentraram-se nas regiões norte, noroeste e nordeste do município. Foram identificados 15 conglomerados espaço-temporais, que se concentraram principalmente nas regiões norte, nordeste e faixa litorânea do município. Observou-se que os bairros relatados pelo SAMU/JP foram categorizados pelo modelo como prioritários, Mandacaru e Valentina, os quais foram categorizados como com tendência a prioritários, e Mangabeira, categorizado como não prioritário. O modelo de decisão proposto apresentou boa concordância quando comparado com o SAMU/JP, sendo assim satisfatório na identificação e classificação dos bairros como prioritários, com tendência a prioritários, com tendência a não prioritários e não prioritários. Os resultados desta pesquisa podem ser de relevância tanto para o SAMU/JP quanto para outros órgãos gestores públicos ligados ao trânsito, educação para o trânsito e atendimento às vítimas produzidas pelo trânsito no município de João Pessoa-PB.Universidade Federal da ParaíbaBRCiências Exatas e da SaúdePrograma de Pós-Graduação em Modelos de Decisão e SaúdeUFPBMoraes, Ronei Marcos dehttp://lattes.cnpq.br/7925449690046513Vianna, Rodrigo Pinheiro de Toledohttp://lattes.cnpq.br/3915051035089861Pereira, Ana Paula de Jesus Tomé2015-05-14T12:47:15Z2018-07-21T00:21:37Z2014-02-272018-07-21T00:21:37Z2013-08-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPEREIRA, Ana Paula de Jesus Tomé. Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. 2013. 164 f. Dissertação (Mestrado em Modelos de Decisão e Saúde) - Universidade Federal da Paraíba, João Pessoa, 2013.https://repositorio.ufpb.br/jspui/handle/tede/6544porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2018-09-06T02:37:19Zoai:repositorio.ufpb.br:tede/6544Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2018-09-06T02:37:19Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. |
title |
Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. |
spellingShingle |
Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. Pereira, Ana Paula de Jesus Tomé Saúde pública Acidentes de trânsito Lógica fuzzy Traffic accident Spatiotemporal cluster Fuzzy logic CIENCIAS DA SAUDE::SAUDE COLETIVA |
title_short |
Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. |
title_full |
Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. |
title_fullStr |
Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. |
title_full_unstemmed |
Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. |
title_sort |
Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. |
author |
Pereira, Ana Paula de Jesus Tomé |
author_facet |
Pereira, Ana Paula de Jesus Tomé |
author_role |
author |
dc.contributor.none.fl_str_mv |
Moraes, Ronei Marcos de http://lattes.cnpq.br/7925449690046513 Vianna, Rodrigo Pinheiro de Toledo http://lattes.cnpq.br/3915051035089861 |
dc.contributor.author.fl_str_mv |
Pereira, Ana Paula de Jesus Tomé |
dc.subject.por.fl_str_mv |
Saúde pública Acidentes de trânsito Lógica fuzzy Traffic accident Spatiotemporal cluster Fuzzy logic CIENCIAS DA SAUDE::SAUDE COLETIVA |
topic |
Saúde pública Acidentes de trânsito Lógica fuzzy Traffic accident Spatiotemporal cluster Fuzzy logic CIENCIAS DA SAUDE::SAUDE COLETIVA |
description |
Traffic accidents represent, in Brazil, a serious economic and especially social, relevant for magnitude of the mortality and number of people suffering from sequelae arising, thus becoming a serious public health problem. This research aimed to develop a model to support decision making based on fuzzy logic, supported by analyzes spatial and spatio-temporal (Scan method) to categorize neighborhoods according to priority intervention for prevention and control of traffic accidents that produce victims. Secondary data were georeferenced and recorded by Mobile Emergency Care Service in João Pessoa, Paraíba, in the years 2010 and 2011. Throughout study period, João Pessoa was 10,070 traffic accidents with victims. Of this total, 17.8% had breath ethanol and 0.8% died at the scene. The majority of victims were male (74.5%), belonging to the age group 20-29 years (37.7%). The accidents occurred mainly on Sundays (19.2%), Saturdays (18.7%) and on Fridays (14.4%) as well as in the months of December (10%), October (9.8% ) and May (8.9%). Most of the vehicles involved was composed by motorcycles (68.1%) and cars (36.5%). The nature of accident, collision was more frequent (46.2%), followed by fall motorcycle (30.7%) and pedestrian injuries (11.1%). In analysis of the relative risk and spatial distribution of these events, it was found that neighborhoods with high relative risk and formed significant spatial clusters concentrated in the north, northwest and northeast of the municipality. We identified 15 clusters space-time, which concentrated mainly in the northern, northeastern and coastal strip of the municipality. It was observed that neighborhoods reported by Mobile Emergency Care Service were categorized as priority by model, Valentina and Mandacaru were categorized as with tendency to priority, and Mangabeira was categorized as non-priority. The proposed decision model showed good agreement when compared with Mobile Emergency Care Service, thus satisfying the identification and classification of neighborhoods as a priority, with tendency to priority, with tendency to non-priority and non-priority. The results may be of relevance to both Mobile Emergency Care Service as to other public officials linked to road traffic, traffic education and care for victims produced by road traffic in João Pessoa. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08-27 2014-02-27 2015-05-14T12:47:15Z 2018-07-21T00:21:37Z 2018-07-21T00:21:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
PEREIRA, Ana Paula de Jesus Tomé. Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. 2013. 164 f. Dissertação (Mestrado em Modelos de Decisão e Saúde) - Universidade Federal da Paraíba, João Pessoa, 2013. https://repositorio.ufpb.br/jspui/handle/tede/6544 |
identifier_str_mv |
PEREIRA, Ana Paula de Jesus Tomé. Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. 2013. 164 f. Dissertação (Mestrado em Modelos de Decisão e Saúde) - Universidade Federal da Paraíba, João Pessoa, 2013. |
url |
https://repositorio.ufpb.br/jspui/handle/tede/6544 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba BR Ciências Exatas e da Saúde Programa de Pós-Graduação em Modelos de Decisão e Saúde UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba BR Ciências Exatas e da Saúde Programa de Pós-Graduação em Modelos de Decisão e Saúde UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801842911697960960 |