Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.

Detalhes bibliográficos
Autor(a) principal: Pereira, Ana Paula de Jesus Tomé
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/tede/6544
Resumo: Traffic accidents represent, in Brazil, a serious economic and especially social, relevant for magnitude of the mortality and number of people suffering from sequelae arising, thus becoming a serious public health problem. This research aimed to develop a model to support decision making based on fuzzy logic, supported by analyzes spatial and spatio-temporal (Scan method) to categorize neighborhoods according to priority intervention for prevention and control of traffic accidents that produce victims. Secondary data were georeferenced and recorded by Mobile Emergency Care Service in João Pessoa, Paraíba, in the years 2010 and 2011. Throughout study period, João Pessoa was 10,070 traffic accidents with victims. Of this total, 17.8% had breath ethanol and 0.8% died at the scene. The majority of victims were male (74.5%), belonging to the age group 20-29 years (37.7%). The accidents occurred mainly on Sundays (19.2%), Saturdays (18.7%) and on Fridays (14.4%) as well as in the months of December (10%), October (9.8% ) and May (8.9%). Most of the vehicles involved was composed by motorcycles (68.1%) and cars (36.5%). The nature of accident, collision was more frequent (46.2%), followed by fall motorcycle (30.7%) and pedestrian injuries (11.1%). In analysis of the relative risk and spatial distribution of these events, it was found that neighborhoods with high relative risk and formed significant spatial clusters concentrated in the north, northwest and northeast of the municipality. We identified 15 clusters space-time, which concentrated mainly in the northern, northeastern and coastal strip of the municipality. It was observed that neighborhoods reported by Mobile Emergency Care Service were categorized as priority by model, Valentina and Mandacaru were categorized as with tendency to priority, and Mangabeira was categorized as non-priority. The proposed decision model showed good agreement when compared with Mobile Emergency Care Service, thus satisfying the identification and classification of neighborhoods as a priority, with tendency to priority, with tendency to non-priority and non-priority. The results may be of relevance to both Mobile Emergency Care Service as to other public officials linked to road traffic, traffic education and care for victims produced by road traffic in João Pessoa.
id UFPB_0333028bc06c0a728ce9949080f66b97
oai_identifier_str oai:repositorio.ufpb.br:tede/6544
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.Saúde públicaAcidentes de trânsitoLógica fuzzyTraffic accidentSpatiotemporal clusterFuzzy logicCIENCIAS DA SAUDE::SAUDE COLETIVATraffic accidents represent, in Brazil, a serious economic and especially social, relevant for magnitude of the mortality and number of people suffering from sequelae arising, thus becoming a serious public health problem. This research aimed to develop a model to support decision making based on fuzzy logic, supported by analyzes spatial and spatio-temporal (Scan method) to categorize neighborhoods according to priority intervention for prevention and control of traffic accidents that produce victims. Secondary data were georeferenced and recorded by Mobile Emergency Care Service in João Pessoa, Paraíba, in the years 2010 and 2011. Throughout study period, João Pessoa was 10,070 traffic accidents with victims. Of this total, 17.8% had breath ethanol and 0.8% died at the scene. The majority of victims were male (74.5%), belonging to the age group 20-29 years (37.7%). The accidents occurred mainly on Sundays (19.2%), Saturdays (18.7%) and on Fridays (14.4%) as well as in the months of December (10%), October (9.8% ) and May (8.9%). Most of the vehicles involved was composed by motorcycles (68.1%) and cars (36.5%). The nature of accident, collision was more frequent (46.2%), followed by fall motorcycle (30.7%) and pedestrian injuries (11.1%). In analysis of the relative risk and spatial distribution of these events, it was found that neighborhoods with high relative risk and formed significant spatial clusters concentrated in the north, northwest and northeast of the municipality. We identified 15 clusters space-time, which concentrated mainly in the northern, northeastern and coastal strip of the municipality. It was observed that neighborhoods reported by Mobile Emergency Care Service were categorized as priority by model, Valentina and Mandacaru were categorized as with tendency to priority, and Mangabeira was categorized as non-priority. The proposed decision model showed good agreement when compared with Mobile Emergency Care Service, thus satisfying the identification and classification of neighborhoods as a priority, with tendency to priority, with tendency to non-priority and non-priority. The results may be of relevance to both Mobile Emergency Care Service as to other public officials linked to road traffic, traffic education and care for victims produced by road traffic in João Pessoa.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESOs acidentes de trânsito representam, no Brasil, um grave problema econômico e principalmente social, relevante pela magnitude da mortalidade e do número de pessoas portadoras de sequelas decorrentes, tornando-se assim um grave problema de saúde pública. Este trabalho objetivou elaborar um modelo de apoio à tomada de decisão baseado em lógica fuzzy, apoiado pelas análises espacial e espaço-temporal (método Scan), para categorizar os bairros de acordo com o grau de prioridade de intervenção para a prevenção e combate dos acidentes de trânsito que produzam vítimas. Foram utilizados dados secundários georreferenciados e registrados pelo Serviço de Atendimento Móvel de Urgência na cidade de João Pessoa, Paraíba, nos anos 2010 e 2011. Ao longo do período de estudo, João Pessoa apresentou 10.070 ocorrências de AT com vítimas. Deste total, 17,8% apresentaram hálito etílico e 0,8% morreram no local do acidente. A maioria das vítimas foi do sexo masculino (74,5%), pertencente à faixa etária de 20 a 29 anos (37,7%). Os acidentes ocorreram principalmente aos domingos (19,2%), aos sábados (18,7%) e às sextas-feiras (14,4%), bem como nos meses de dezembro (10%), outubro (9,8%) e maio (8,9%). A maioria dos veículos envolvidos foi composta por motocicletas (68,1%) e carros (36,5%). Quanto à natureza do acidente, a colisão foi mais frequente (46,2%), seguida por queda de motocicleta (30,7%) e atropelamento (11,1%). Na análise do risco relativo e da distribuição espacial destes eventos, verificou-se que os bairros com alto risco relativo e que formaram conglomerados espaciais significativos concentraram-se nas regiões norte, noroeste e nordeste do município. Foram identificados 15 conglomerados espaço-temporais, que se concentraram principalmente nas regiões norte, nordeste e faixa litorânea do município. Observou-se que os bairros relatados pelo SAMU/JP foram categorizados pelo modelo como prioritários, Mandacaru e Valentina, os quais foram categorizados como com tendência a prioritários, e Mangabeira, categorizado como não prioritário. O modelo de decisão proposto apresentou boa concordância quando comparado com o SAMU/JP, sendo assim satisfatório na identificação e classificação dos bairros como prioritários, com tendência a prioritários, com tendência a não prioritários e não prioritários. Os resultados desta pesquisa podem ser de relevância tanto para o SAMU/JP quanto para outros órgãos gestores públicos ligados ao trânsito, educação para o trânsito e atendimento às vítimas produzidas pelo trânsito no município de João Pessoa-PB.Universidade Federal da Paraí­baBRCiências Exatas e da SaúdePrograma de Pós-Graduação em Modelos de Decisão e SaúdeUFPBMoraes, Ronei Marcos dehttp://lattes.cnpq.br/7925449690046513Vianna, Rodrigo Pinheiro de Toledohttp://lattes.cnpq.br/3915051035089861Pereira, Ana Paula de Jesus Tomé2015-05-14T12:47:15Z2018-07-21T00:21:37Z2014-02-272018-07-21T00:21:37Z2013-08-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPEREIRA, Ana Paula de Jesus Tomé. Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. 2013. 164 f. Dissertação (Mestrado em Modelos de Decisão e Saúde) - Universidade Federal da Paraí­ba, João Pessoa, 2013.https://repositorio.ufpb.br/jspui/handle/tede/6544porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2018-09-06T02:37:19Zoai:repositorio.ufpb.br:tede/6544Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2018-09-06T02:37:19Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.
title Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.
spellingShingle Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.
Pereira, Ana Paula de Jesus Tomé
Saúde pública
Acidentes de trânsito
Lógica fuzzy
Traffic accident
Spatiotemporal cluster
Fuzzy logic
CIENCIAS DA SAUDE::SAUDE COLETIVA
title_short Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.
title_full Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.
title_fullStr Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.
title_full_unstemmed Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.
title_sort Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy.
author Pereira, Ana Paula de Jesus Tomé
author_facet Pereira, Ana Paula de Jesus Tomé
author_role author
dc.contributor.none.fl_str_mv Moraes, Ronei Marcos de
http://lattes.cnpq.br/7925449690046513
Vianna, Rodrigo Pinheiro de Toledo
http://lattes.cnpq.br/3915051035089861
dc.contributor.author.fl_str_mv Pereira, Ana Paula de Jesus Tomé
dc.subject.por.fl_str_mv Saúde pública
Acidentes de trânsito
Lógica fuzzy
Traffic accident
Spatiotemporal cluster
Fuzzy logic
CIENCIAS DA SAUDE::SAUDE COLETIVA
topic Saúde pública
Acidentes de trânsito
Lógica fuzzy
Traffic accident
Spatiotemporal cluster
Fuzzy logic
CIENCIAS DA SAUDE::SAUDE COLETIVA
description Traffic accidents represent, in Brazil, a serious economic and especially social, relevant for magnitude of the mortality and number of people suffering from sequelae arising, thus becoming a serious public health problem. This research aimed to develop a model to support decision making based on fuzzy logic, supported by analyzes spatial and spatio-temporal (Scan method) to categorize neighborhoods according to priority intervention for prevention and control of traffic accidents that produce victims. Secondary data were georeferenced and recorded by Mobile Emergency Care Service in João Pessoa, Paraíba, in the years 2010 and 2011. Throughout study period, João Pessoa was 10,070 traffic accidents with victims. Of this total, 17.8% had breath ethanol and 0.8% died at the scene. The majority of victims were male (74.5%), belonging to the age group 20-29 years (37.7%). The accidents occurred mainly on Sundays (19.2%), Saturdays (18.7%) and on Fridays (14.4%) as well as in the months of December (10%), October (9.8% ) and May (8.9%). Most of the vehicles involved was composed by motorcycles (68.1%) and cars (36.5%). The nature of accident, collision was more frequent (46.2%), followed by fall motorcycle (30.7%) and pedestrian injuries (11.1%). In analysis of the relative risk and spatial distribution of these events, it was found that neighborhoods with high relative risk and formed significant spatial clusters concentrated in the north, northwest and northeast of the municipality. We identified 15 clusters space-time, which concentrated mainly in the northern, northeastern and coastal strip of the municipality. It was observed that neighborhoods reported by Mobile Emergency Care Service were categorized as priority by model, Valentina and Mandacaru were categorized as with tendency to priority, and Mangabeira was categorized as non-priority. The proposed decision model showed good agreement when compared with Mobile Emergency Care Service, thus satisfying the identification and classification of neighborhoods as a priority, with tendency to priority, with tendency to non-priority and non-priority. The results may be of relevance to both Mobile Emergency Care Service as to other public officials linked to road traffic, traffic education and care for victims produced by road traffic in João Pessoa.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-27
2014-02-27
2015-05-14T12:47:15Z
2018-07-21T00:21:37Z
2018-07-21T00:21:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PEREIRA, Ana Paula de Jesus Tomé. Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. 2013. 164 f. Dissertação (Mestrado em Modelos de Decisão e Saúde) - Universidade Federal da Paraí­ba, João Pessoa, 2013.
https://repositorio.ufpb.br/jspui/handle/tede/6544
identifier_str_mv PEREIRA, Ana Paula de Jesus Tomé. Modelo de suporte à tomada de decisão sobre de acidentes de trânsito com vítimas baseado em lógica fuzzy. 2013. 164 f. Dissertação (Mestrado em Modelos de Decisão e Saúde) - Universidade Federal da Paraí­ba, João Pessoa, 2013.
url https://repositorio.ufpb.br/jspui/handle/tede/6544
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal da Paraí­ba
BR
Ciências Exatas e da Saúde
Programa de Pós-Graduação em Modelos de Decisão e Saúde
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraí­ba
BR
Ciências Exatas e da Saúde
Programa de Pós-Graduação em Modelos de Decisão e Saúde
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| diretoria@ufpb.br
_version_ 1801842911697960960