Anti-windup and load shedding for smooth transitions in multi-loop power management of islanded single unit-sourced microgrids
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/29369 |
Resumo: | The huge development of distributed generation (DG) systems and their insertion in the main grid has made the concept of microgrids the target of much research. Renewable energy sources (RES) like photovoltaic (PV) and wind systems represent a vast part of DG units once they have been developed to replace non-clean energy sources. Still, it has been a challenge to make possible RES operations in islanded microgrid environments, especially those formed by PV systems. The intermittent behavior of RES and their lack of power reserve have provoked many problems like voltage and frequency deviations. For this reason, energy storage devices such as battery energy storage systems (BESS) represent an important solution for power support in islanded systems due to their fast response to outages. Several strategies have been studied to provide standalone microgrid environments with power management for maintaining the balance between generation power and load demand. However, critical situations where the microgrid is composed of only one generation system have been little addressed. In these cases, the physical limitation of BESS instigates crucial decisions for keeping the grid balance such as generation power curtailment, when BESS charging limits are reached, and load-shedding, when it reaches discharging limits. This work studies a multi-loop power management strategy for a three-phase islanded microgrid formed by one PV/BESS-based generation unit with grid-forming droop control for the Voltage Source Inverter (VSI), including a secondary frequency/voltage regulation and Proportional-Resonant control loops. To better understand the unit behavior, the operation is divided into states. The transition among the states is performed by the multi-loop strategy whenever the BESS has reached any limit. However, it is extremely necessary to ensure smooth state transitions in order to avoid harmful current and voltage variations. As the strategy is based on Proportional-Integral controllers, the physical limitation of the BESS may cause constant steady-state errors and consequently integration windup. This problem is extremely undesirable, because it may cause decision delays and/or undesired transients during the transition among operation states. This work proposes the use of integration anti-windup techniques in important PI controllers for improving state transitions. Two well-known anti-windup techniques are compared in order to assess smoother behavior. In addition, this work provides an improved load-shedding strategy based on the unit DC-link voltage to keep the power balance in cases of low generation power availability. The results showed that anti-windup methods are essential to avoid undesired transients, decision delays, and current/voltage harmful oscillations during operation state transitions. Two anti-windup methods were tested: clamping and back-calculation. Both showed satisfactory performances. However, the back-calculation technique showed a better performance in a situation when the BESS state-of-charge (SoC) has to be regulated. This technique presented a better response by avoiding under and overshoots during the transitions. Finally, the work was developed through Matlab/Simulink simulations. |
id |
UFPB_2894baca000ae16b0de3eda2ce037b8d |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/29369 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Anti-windup and load shedding for smooth transitions in multi-loop power management of islanded single unit-sourced microgridsEngenharia elétricaMicrorrede ilhadaUnidade fotovoltaica com bateriasGerenciamento de potência multi-loopCorte de cargaControle Formador de Rede baseado em Controle DroopAnti-windupIslanded MicrogridPhotovoltaic-Battery unitMulti-loop Power ManagementGrid-Forming Droop ControlAnti-windupLoad SheddingCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAThe huge development of distributed generation (DG) systems and their insertion in the main grid has made the concept of microgrids the target of much research. Renewable energy sources (RES) like photovoltaic (PV) and wind systems represent a vast part of DG units once they have been developed to replace non-clean energy sources. Still, it has been a challenge to make possible RES operations in islanded microgrid environments, especially those formed by PV systems. The intermittent behavior of RES and their lack of power reserve have provoked many problems like voltage and frequency deviations. For this reason, energy storage devices such as battery energy storage systems (BESS) represent an important solution for power support in islanded systems due to their fast response to outages. Several strategies have been studied to provide standalone microgrid environments with power management for maintaining the balance between generation power and load demand. However, critical situations where the microgrid is composed of only one generation system have been little addressed. In these cases, the physical limitation of BESS instigates crucial decisions for keeping the grid balance such as generation power curtailment, when BESS charging limits are reached, and load-shedding, when it reaches discharging limits. This work studies a multi-loop power management strategy for a three-phase islanded microgrid formed by one PV/BESS-based generation unit with grid-forming droop control for the Voltage Source Inverter (VSI), including a secondary frequency/voltage regulation and Proportional-Resonant control loops. To better understand the unit behavior, the operation is divided into states. The transition among the states is performed by the multi-loop strategy whenever the BESS has reached any limit. However, it is extremely necessary to ensure smooth state transitions in order to avoid harmful current and voltage variations. As the strategy is based on Proportional-Integral controllers, the physical limitation of the BESS may cause constant steady-state errors and consequently integration windup. This problem is extremely undesirable, because it may cause decision delays and/or undesired transients during the transition among operation states. This work proposes the use of integration anti-windup techniques in important PI controllers for improving state transitions. Two well-known anti-windup techniques are compared in order to assess smoother behavior. In addition, this work provides an improved load-shedding strategy based on the unit DC-link voltage to keep the power balance in cases of low generation power availability. The results showed that anti-windup methods are essential to avoid undesired transients, decision delays, and current/voltage harmful oscillations during operation state transitions. Two anti-windup methods were tested: clamping and back-calculation. Both showed satisfactory performances. However, the back-calculation technique showed a better performance in a situation when the BESS state-of-charge (SoC) has to be regulated. This technique presented a better response by avoiding under and overshoots during the transitions. Finally, the work was developed through Matlab/Simulink simulations.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO grande desenvolvimento dos sistemas de geração distribuída (GD) e sua inserção na rede principal tornou o conceito de microrredes alvo de muitas pesquisas. Fontes de energia renovável (FER) como sistemas fotovoltaicos (PV) e eólicos representam uma grande parte das unidades de GD uma vez que foram desenvolvidas para substituir fontes de energia não limpas. Ainda assim, tem sido um desafio viabilizar operações de FER em ambientes insulares de MG, principalmente naqueles formados por sistemas fotovoltaicos. O comportamento intermitente dos RES e sua falta de reserva de energia provocaram muitos problemas como desvios de tensão e frequência. Por esta razão, os dispositivos de armazenamento de energia, como os sistemas de armazenamento de energia por bateria (BESS), representam uma importante solução para suporte de energia em sistemas ilhados devido à sua rápida resposta a interrupções. Várias estratégias foram estudadas para fornecer ambientes de microrredes autônomos com gerenciamento de energia para manter o equilíbrio entre geração de energia e demanda de carga. No entanto, situações críticas em que a microrrede é composta por apenas um sistema de geração têm sido pouco abordadas. Nesses casos, a limitação física do BESS instiga decisões cruciais para manter o equilíbrio da rede, como o corte de potência de geração, quando os limites de carregamento do BESS são atingidos, e o corte de carga, quando BESS atinge os limites de descarga. Este trabalho estuda uma estratégia de gerenciamento de energia multi-loop para uma microrrede trifásica, ilhada e formada por uma unidade de geração fotovoltaica com BESS, incluindo controle formador de rede baseado em controle droop para o inversor fonte de tensão (VSI), incluindo uma regulação de frequência/tensão secundária, e malhas de controle Proporcional-Ressonante. Para entender melhor o comportamento da unidade, a operação é dividida em estados. A transição entre os estados é realizada pela estratégia multi-loop sempre que o BESS atingir algum limite. No entanto, é extremamente necessário garantir transições de estado suaves para evitar variações prejudiciais de corrente e tensão. Como a estratégia é baseada em controladores Proporcionais-Integrais, a limitação física do BESS pode ocasionar erros constantes de regime permanente e conseqüentemente windup da integração. Este problema é extremamente indesejável, pois pode causar atrasos de decisão e/ou transientes indesejados durante a transição de estados. Este trabalho propõe o uso de técnicas anti-windup de integração em controladores PI para melhorar as transições de estado. Duas técnicas anti-windup bem conhecidas são comparadas a fim de avaliar um comportamento mais suave. Além disso, este trabalho fornece uma estratégia aprimorada de corte de carga com base na tensão do barramento CC da unidade para manter o equilíbrio de potência em casos de baixa disponibilidade de geração. Os resultados mostraram que métodos anti-windup são essenciais para evitar transientes indesejados, atrasos de decisão e oscilações prejudiciais de corrente/tensão durante as transições de estado de operação. Dois métodos anti-windup foram testados: clamping e back-calculation. Ambos apresentaram desempenhos satisfatórios. No entanto, a técnica back-calculation mostrou um melhor desempenho em situalções em que o estado de carga (SoC) do BESS precisa ser regulado. Essa técnica apresentou uma melhor resposta evitando under e overshoots dos controladores durante as transições. Por fim, o trabalho foi desenvolvido por meio de simulações no Matlab/Simulink.Universidade Federal da ParaíbaBrasilEngenharia ElétricaPrograma de Pós-Graduação em Engenharia ElétricaUFPBBarros, Camila Mara Vitalhttp://lattes.cnpq.br/1315327332959469Alcântara, Pedro Aquino de2024-01-29T22:00:58Z2023-07-112024-01-29T22:00:58Z2023-06-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/29369porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2024-01-30T06:09:01Zoai:repositorio.ufpb.br:123456789/29369Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2024-01-30T06:09:01Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Anti-windup and load shedding for smooth transitions in multi-loop power management of islanded single unit-sourced microgrids |
title |
Anti-windup and load shedding for smooth transitions in multi-loop power management of islanded single unit-sourced microgrids |
spellingShingle |
Anti-windup and load shedding for smooth transitions in multi-loop power management of islanded single unit-sourced microgrids Alcântara, Pedro Aquino de Engenharia elétrica Microrrede ilhada Unidade fotovoltaica com baterias Gerenciamento de potência multi-loop Corte de carga Controle Formador de Rede baseado em Controle Droop Anti-windup Islanded Microgrid Photovoltaic-Battery unit Multi-loop Power Management Grid-Forming Droop Control Anti-windup Load Shedding CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Anti-windup and load shedding for smooth transitions in multi-loop power management of islanded single unit-sourced microgrids |
title_full |
Anti-windup and load shedding for smooth transitions in multi-loop power management of islanded single unit-sourced microgrids |
title_fullStr |
Anti-windup and load shedding for smooth transitions in multi-loop power management of islanded single unit-sourced microgrids |
title_full_unstemmed |
Anti-windup and load shedding for smooth transitions in multi-loop power management of islanded single unit-sourced microgrids |
title_sort |
Anti-windup and load shedding for smooth transitions in multi-loop power management of islanded single unit-sourced microgrids |
author |
Alcântara, Pedro Aquino de |
author_facet |
Alcântara, Pedro Aquino de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barros, Camila Mara Vital http://lattes.cnpq.br/1315327332959469 |
dc.contributor.author.fl_str_mv |
Alcântara, Pedro Aquino de |
dc.subject.por.fl_str_mv |
Engenharia elétrica Microrrede ilhada Unidade fotovoltaica com baterias Gerenciamento de potência multi-loop Corte de carga Controle Formador de Rede baseado em Controle Droop Anti-windup Islanded Microgrid Photovoltaic-Battery unit Multi-loop Power Management Grid-Forming Droop Control Anti-windup Load Shedding CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
Engenharia elétrica Microrrede ilhada Unidade fotovoltaica com baterias Gerenciamento de potência multi-loop Corte de carga Controle Formador de Rede baseado em Controle Droop Anti-windup Islanded Microgrid Photovoltaic-Battery unit Multi-loop Power Management Grid-Forming Droop Control Anti-windup Load Shedding CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
description |
The huge development of distributed generation (DG) systems and their insertion in the main grid has made the concept of microgrids the target of much research. Renewable energy sources (RES) like photovoltaic (PV) and wind systems represent a vast part of DG units once they have been developed to replace non-clean energy sources. Still, it has been a challenge to make possible RES operations in islanded microgrid environments, especially those formed by PV systems. The intermittent behavior of RES and their lack of power reserve have provoked many problems like voltage and frequency deviations. For this reason, energy storage devices such as battery energy storage systems (BESS) represent an important solution for power support in islanded systems due to their fast response to outages. Several strategies have been studied to provide standalone microgrid environments with power management for maintaining the balance between generation power and load demand. However, critical situations where the microgrid is composed of only one generation system have been little addressed. In these cases, the physical limitation of BESS instigates crucial decisions for keeping the grid balance such as generation power curtailment, when BESS charging limits are reached, and load-shedding, when it reaches discharging limits. This work studies a multi-loop power management strategy for a three-phase islanded microgrid formed by one PV/BESS-based generation unit with grid-forming droop control for the Voltage Source Inverter (VSI), including a secondary frequency/voltage regulation and Proportional-Resonant control loops. To better understand the unit behavior, the operation is divided into states. The transition among the states is performed by the multi-loop strategy whenever the BESS has reached any limit. However, it is extremely necessary to ensure smooth state transitions in order to avoid harmful current and voltage variations. As the strategy is based on Proportional-Integral controllers, the physical limitation of the BESS may cause constant steady-state errors and consequently integration windup. This problem is extremely undesirable, because it may cause decision delays and/or undesired transients during the transition among operation states. This work proposes the use of integration anti-windup techniques in important PI controllers for improving state transitions. Two well-known anti-windup techniques are compared in order to assess smoother behavior. In addition, this work provides an improved load-shedding strategy based on the unit DC-link voltage to keep the power balance in cases of low generation power availability. The results showed that anti-windup methods are essential to avoid undesired transients, decision delays, and current/voltage harmful oscillations during operation state transitions. Two anti-windup methods were tested: clamping and back-calculation. Both showed satisfactory performances. However, the back-calculation technique showed a better performance in a situation when the BESS state-of-charge (SoC) has to be regulated. This technique presented a better response by avoiding under and overshoots during the transitions. Finally, the work was developed through Matlab/Simulink simulations. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-11 2023-06-29 2024-01-29T22:00:58Z 2024-01-29T22:00:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/29369 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/29369 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801843015425196032 |