Cinética da gaseificação com CO2 de resíduos sólidos da indústria alimentícia
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/25992 |
Resumo: | The thermochemical conversion of biomass is a means of disposal and use of solid waste, mainly from agro-industries. The objective of this study was to analyze the gasification characteristics of residues from coffee grounds (BC), guava seed (SG) and cashew bagasse (BCJ) in N2 (pyrolysis) and CO2 (gasification) atmospheres, in addition to observing the kinetics of the process. The materials went through the process of pyrolysis followed by gasification in a continuous way, without the need to remove the material after being pyrolyzed. Gasification was studied in isothermal and dynamic mode. For the analysis of gasification in the isothermal mode, the material was heated in an inert atmosphere of N2 with a heating rate of 20 ºC/min and a flow of 100 mL/min until reaching the temperature of 875, 925 and 975 ºC at which, after this temperature, CO2 gas was activated. In the dynamic process (non-isothermal), the gasifying agent (CO2) was activated from the beginning of the reaction (room temperature) until reaching a temperature of 1000 °C, with a constant flow of 100 mL/min and heating rates varying between (10, 20, 30 and 40°C/min). In the pyrolysis process, the materials from temperatures close to 600 ºC began to decompose slowly, whereas in the CO2 atmosphere the mass loss profile was very close to pyrolysis below 600 ºC. At higher temperatures, the materials continued to react until the complete carbon consumption of the biochar. The analyzed biomasses showed a high calorific value when compared to other biomasses found in the literature ranging between (19.2 and 22.7 MJ.kg-1). The content of volatile materials and fixed carbon showed that there is a large amount of compounds to be devolatilized and there is little ash production, mainly for SG and BCJ. To analyze the kinetics, the models were applied: homogeneous, unreacted core and random pores for the three analyzed biomasses. In the non-isothermal kinetics, the activation energy varied between 155.18 - 205.41 kJ.mol-1 and the pre-exponential factor between 9.94x105 - 6.49x108 min-1. The activation energies for the isothermal method ranged between 123.55 - 219.22 kJ.mol-1 and the pre-exponential factor between 2.99x105 - 2.62x108 min-1. In this way, it is possible to verify that biomasses have good physicochemical characteristics and that their applicability for energy purposes is possible, in addition to being a more suitable use for waste. |
id |
UFPB_2a19ffecab1490502e5b94b4a99f19db |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/25992 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Cinética da gaseificação com CO2 de resíduos sólidos da indústria alimentíciaBiomassaResíduos sólidosConversão térmicaTermogravimetriaCinéticaBiomassSolid wasteThermal conversionThermogravimetryKineticsCNPQ::ENGENHARIASThe thermochemical conversion of biomass is a means of disposal and use of solid waste, mainly from agro-industries. The objective of this study was to analyze the gasification characteristics of residues from coffee grounds (BC), guava seed (SG) and cashew bagasse (BCJ) in N2 (pyrolysis) and CO2 (gasification) atmospheres, in addition to observing the kinetics of the process. The materials went through the process of pyrolysis followed by gasification in a continuous way, without the need to remove the material after being pyrolyzed. Gasification was studied in isothermal and dynamic mode. For the analysis of gasification in the isothermal mode, the material was heated in an inert atmosphere of N2 with a heating rate of 20 ºC/min and a flow of 100 mL/min until reaching the temperature of 875, 925 and 975 ºC at which, after this temperature, CO2 gas was activated. In the dynamic process (non-isothermal), the gasifying agent (CO2) was activated from the beginning of the reaction (room temperature) until reaching a temperature of 1000 °C, with a constant flow of 100 mL/min and heating rates varying between (10, 20, 30 and 40°C/min). In the pyrolysis process, the materials from temperatures close to 600 ºC began to decompose slowly, whereas in the CO2 atmosphere the mass loss profile was very close to pyrolysis below 600 ºC. At higher temperatures, the materials continued to react until the complete carbon consumption of the biochar. The analyzed biomasses showed a high calorific value when compared to other biomasses found in the literature ranging between (19.2 and 22.7 MJ.kg-1). The content of volatile materials and fixed carbon showed that there is a large amount of compounds to be devolatilized and there is little ash production, mainly for SG and BCJ. To analyze the kinetics, the models were applied: homogeneous, unreacted core and random pores for the three analyzed biomasses. In the non-isothermal kinetics, the activation energy varied between 155.18 - 205.41 kJ.mol-1 and the pre-exponential factor between 9.94x105 - 6.49x108 min-1. The activation energies for the isothermal method ranged between 123.55 - 219.22 kJ.mol-1 and the pre-exponential factor between 2.99x105 - 2.62x108 min-1. In this way, it is possible to verify that biomasses have good physicochemical characteristics and that their applicability for energy purposes is possible, in addition to being a more suitable use for waste.Fundação de Apoio à Pesquisa do Estado da Paraíba - FAPESQA conversão termoquímica de biomassa é um meio de destinação e aproveitamento de resíduos sólidos, principalmente os provenientes das agroindústrias. O objetivo desse estudo foi analisar as características de gaseificação dos resíduos da borra de café (BC), semente da goiaba (SG) e bagaço de caju (BCJ) em atmosferas de N2 (pirólise) e CO2 (gaseificação) além de observar a cinética do processo. Os materiais passaram pelo processo de pirólise seguida da gaseificação de forma contínua, sem a necessidade de retirada do material após serem pirolisados. A gaseificação foi estudada no modo isotérmico e dinâmico. Para a análise da gaseificação no modo isotérmico, o material foi aquecido em atmosfera inerte de N2 com taxa de aquecimento de 20 ºC/min e fluxo de 100 mL/min até atingir a temperatura de 875, 925 e 975 ºC na qual, após essa temperatura foi acionado o gás CO2. No processo dinâmico (não isotérmico), o agente gaseificante (CO2) foi acionado desde o início da reação (temperatura ambiente) até atingir a temperatura de 1000 ºC, com fluxo constante de 100 mL/min e taxas de aquecimento variando entre (10, 20, 30 e 40 ºC/min). No processo de pirólise, os materiais a partir de temperaturas próximas a 600 ºC começaram a se decompor lentamente, já na atmosfera de CO2 o perfil de perda de massa foi muito próximo a pirólise abaixo de 600 ºC. Em temperaturas mais elevadas, os materiais continuaram a reagir até o completo consumo de carbono do biocarvão. As biomassas analisadas mostraram ter um elevado poder calorífico quando comparadas a outras biomassas encontradas na literatura variando entre (19,2 e 22,7 MJ.kg-1). O teor de materiais voláteis e o carbono fixo demonstraram que, há grande quantidade de compostos a serem devolatilizados e há pouca produção de cinzas, principalmente para a SG e BCJ. Para análise da cinética foram aplicados os modelos: homogêneo, de núcleo não reagido e de poros aleatórios para as três biomassas analisadas. Na cinética não isotérmica a energia de ativação variou entre 155,18 - 205,41 kJ.mol-1 e o fator pré-exponencial entre 9,94x105 - 6,49x108 min-1. As energias de ativação para o método isotérmico variaram entre 123,55 - 219,22 kJ.mol-1 e o fator pré-exponencial entre 2,99x105 - 2,62x108 min-1. Dessa forma, é possível constatar que as biomassas possuem boas características físico-químicas e que sua aplicabilidade para fins energéticos é possível, além de ser um aproveitamento mais adequado para os resíduos.Universidade Federal da ParaíbaBrasilEngenharia de Energias RenováveisPrograma de Pós-Graduação em Energias RenováveisUFPBAndersen, Silvia Layara Florianihttp://lattes.cnpq.br/2031930949755065Silva, Jean Constantino Gomes dahttp://lattes.cnpq.br/9670140872527567Gabriel, Isabel Alves Pimenta2023-01-26T14:44:40Z2022-11-102023-01-26T14:44:40Z2022-08-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/25992porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2023-05-22T16:59:57Zoai:repositorio.ufpb.br:123456789/25992Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2023-05-22T16:59:57Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Cinética da gaseificação com CO2 de resíduos sólidos da indústria alimentícia |
title |
Cinética da gaseificação com CO2 de resíduos sólidos da indústria alimentícia |
spellingShingle |
Cinética da gaseificação com CO2 de resíduos sólidos da indústria alimentícia Gabriel, Isabel Alves Pimenta Biomassa Resíduos sólidos Conversão térmica Termogravimetria Cinética Biomass Solid waste Thermal conversion Thermogravimetry Kinetics CNPQ::ENGENHARIAS |
title_short |
Cinética da gaseificação com CO2 de resíduos sólidos da indústria alimentícia |
title_full |
Cinética da gaseificação com CO2 de resíduos sólidos da indústria alimentícia |
title_fullStr |
Cinética da gaseificação com CO2 de resíduos sólidos da indústria alimentícia |
title_full_unstemmed |
Cinética da gaseificação com CO2 de resíduos sólidos da indústria alimentícia |
title_sort |
Cinética da gaseificação com CO2 de resíduos sólidos da indústria alimentícia |
author |
Gabriel, Isabel Alves Pimenta |
author_facet |
Gabriel, Isabel Alves Pimenta |
author_role |
author |
dc.contributor.none.fl_str_mv |
Andersen, Silvia Layara Floriani http://lattes.cnpq.br/2031930949755065 Silva, Jean Constantino Gomes da http://lattes.cnpq.br/9670140872527567 |
dc.contributor.author.fl_str_mv |
Gabriel, Isabel Alves Pimenta |
dc.subject.por.fl_str_mv |
Biomassa Resíduos sólidos Conversão térmica Termogravimetria Cinética Biomass Solid waste Thermal conversion Thermogravimetry Kinetics CNPQ::ENGENHARIAS |
topic |
Biomassa Resíduos sólidos Conversão térmica Termogravimetria Cinética Biomass Solid waste Thermal conversion Thermogravimetry Kinetics CNPQ::ENGENHARIAS |
description |
The thermochemical conversion of biomass is a means of disposal and use of solid waste, mainly from agro-industries. The objective of this study was to analyze the gasification characteristics of residues from coffee grounds (BC), guava seed (SG) and cashew bagasse (BCJ) in N2 (pyrolysis) and CO2 (gasification) atmospheres, in addition to observing the kinetics of the process. The materials went through the process of pyrolysis followed by gasification in a continuous way, without the need to remove the material after being pyrolyzed. Gasification was studied in isothermal and dynamic mode. For the analysis of gasification in the isothermal mode, the material was heated in an inert atmosphere of N2 with a heating rate of 20 ºC/min and a flow of 100 mL/min until reaching the temperature of 875, 925 and 975 ºC at which, after this temperature, CO2 gas was activated. In the dynamic process (non-isothermal), the gasifying agent (CO2) was activated from the beginning of the reaction (room temperature) until reaching a temperature of 1000 °C, with a constant flow of 100 mL/min and heating rates varying between (10, 20, 30 and 40°C/min). In the pyrolysis process, the materials from temperatures close to 600 ºC began to decompose slowly, whereas in the CO2 atmosphere the mass loss profile was very close to pyrolysis below 600 ºC. At higher temperatures, the materials continued to react until the complete carbon consumption of the biochar. The analyzed biomasses showed a high calorific value when compared to other biomasses found in the literature ranging between (19.2 and 22.7 MJ.kg-1). The content of volatile materials and fixed carbon showed that there is a large amount of compounds to be devolatilized and there is little ash production, mainly for SG and BCJ. To analyze the kinetics, the models were applied: homogeneous, unreacted core and random pores for the three analyzed biomasses. In the non-isothermal kinetics, the activation energy varied between 155.18 - 205.41 kJ.mol-1 and the pre-exponential factor between 9.94x105 - 6.49x108 min-1. The activation energies for the isothermal method ranged between 123.55 - 219.22 kJ.mol-1 and the pre-exponential factor between 2.99x105 - 2.62x108 min-1. In this way, it is possible to verify that biomasses have good physicochemical characteristics and that their applicability for energy purposes is possible, in addition to being a more suitable use for waste. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-10 2022-08-26 2023-01-26T14:44:40Z 2023-01-26T14:44:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/25992 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/25992 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia de Energias Renováveis Programa de Pós-Graduação em Energias Renováveis UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia de Energias Renováveis Programa de Pós-Graduação em Energias Renováveis UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801843003664367616 |