Estudos quimiotaxonômicos e triagem virtual de flavonoides isolados da família asteraceae com potencial atividade leishmanicida

Detalhes bibliográficos
Autor(a) principal: Cavalcanti, Élida Batista Vieira Sousa
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/123456789/11091
Resumo: Neglected diseases affect millions of people around the world, one of them is leishmaniasis caused by protozoa of the genus Leishmania, whose treatment is still a challenge to science. Several research groups have confirmed that natural products have been a rich source of compounds with leishmanicidal activity, among them flavonoids, widely found in species of the Asteraceae family, which can therefore be used as taxonomic markers at lower hierarchical levels, in addition, in recent years there has been an increase in virtual screening studies that have demonstrated antiprotozoal activity of these compounds. The objective of this work is to combine virtual screening methodologies through machine learning using molecular descriptors and molecular docking in order to predict the potential leishmanicidal activity of flavonoids isolated from species of the Asteraceae family. Chapter 2 presents a publication in the book Multi-Scale Approaches in Drug Discovery (2017) that reports the properties and pharmacological potential of the flavonoids of Asteraceae. Through the literature review, it was possible to conclude that these compounds can become candidates for new drugs with multitarget activity against agents that cause protozoal diseases. Chapter 3 approaches the study conducted for the classification of Asteraceae tribes based on the number of occurrences of flavonoids in our internal database (available at www.sistematx.ufpb.br) using descriptors calculated by DRAGON 7.0 software. The 2371 botanical occurrences with respective 74 molecular fragment descriptors were used as input data in SOM Toolbox 2.0 (Matlab) to generate Self-Organizing Maps (SOMs), classifying five tribes: Anthemideae (A), Gnaphalieae (G), Tageteae (T), Senecioneae (S) and Carduoideae (CR). The positively contributed descriptors and the location of some molecules on the maps relative to each descriptor were verified, so SOM can be a useful tool in the search for flavonoids with their respective taxonomic information and biological activities.In chapter 4 the construction of prediction models was performed through the KNIME program using descriptors calculated by Volsurf software encompassing registered flavonoids in our database (in-house databank) associated with other databases (ChEMBL) containing compounds with activity against strains of Leishmania species. In Chapter 4, the construction of prediction models was performed through the KNIME program using descriptors calculated by the Volsurf software, including 889 flavonoids registered in our database (in-house databank) associated to other databases (ChEMBL) containing compounds with activity in front to strains of Leishmania species. Structure-based virtual screening was also performed through molecular docking of the same flavonoid database using 11 target enzymes from Leishmania species including a model of Arginase enzyme homology. Finally, through a consensus analysis of the two techniques, it was sought to normalize the probability values, to verify compounds potentially active against leishmaniasis. Thus, it was possible to predict the potential of the Asteraceae family of flavonoids are active against some species of 11 Leishmania, contributing to the in silico studies of natural products against neglected diseases caused by protozoa.
id UFPB_2f558a4720a8894364f4330105c871ed
oai_identifier_str oai:repositorio.ufpb.br:123456789/11091
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Estudos quimiotaxonômicos e triagem virtual de flavonoides isolados da família asteraceae com potencial atividade leishmanicidaLeishmaniaAsteraceaeflavonoidesmultitargetMapas Auto-Organizáveisdescritores molecularesmodelos de prediçãodockingLeishmaniadockingflavonoidsmultitargetAsteraceaeSelf-Organizing Mapsmolecular descriptorsprediction modelsCNPQ::CIENCIAS BIOLOGICAS::FARMACOLOGIANeglected diseases affect millions of people around the world, one of them is leishmaniasis caused by protozoa of the genus Leishmania, whose treatment is still a challenge to science. Several research groups have confirmed that natural products have been a rich source of compounds with leishmanicidal activity, among them flavonoids, widely found in species of the Asteraceae family, which can therefore be used as taxonomic markers at lower hierarchical levels, in addition, in recent years there has been an increase in virtual screening studies that have demonstrated antiprotozoal activity of these compounds. The objective of this work is to combine virtual screening methodologies through machine learning using molecular descriptors and molecular docking in order to predict the potential leishmanicidal activity of flavonoids isolated from species of the Asteraceae family. Chapter 2 presents a publication in the book Multi-Scale Approaches in Drug Discovery (2017) that reports the properties and pharmacological potential of the flavonoids of Asteraceae. Through the literature review, it was possible to conclude that these compounds can become candidates for new drugs with multitarget activity against agents that cause protozoal diseases. Chapter 3 approaches the study conducted for the classification of Asteraceae tribes based on the number of occurrences of flavonoids in our internal database (available at www.sistematx.ufpb.br) using descriptors calculated by DRAGON 7.0 software. The 2371 botanical occurrences with respective 74 molecular fragment descriptors were used as input data in SOM Toolbox 2.0 (Matlab) to generate Self-Organizing Maps (SOMs), classifying five tribes: Anthemideae (A), Gnaphalieae (G), Tageteae (T), Senecioneae (S) and Carduoideae (CR). The positively contributed descriptors and the location of some molecules on the maps relative to each descriptor were verified, so SOM can be a useful tool in the search for flavonoids with their respective taxonomic information and biological activities.In chapter 4 the construction of prediction models was performed through the KNIME program using descriptors calculated by Volsurf software encompassing registered flavonoids in our database (in-house databank) associated with other databases (ChEMBL) containing compounds with activity against strains of Leishmania species. In Chapter 4, the construction of prediction models was performed through the KNIME program using descriptors calculated by the Volsurf software, including 889 flavonoids registered in our database (in-house databank) associated to other databases (ChEMBL) containing compounds with activity in front to strains of Leishmania species. Structure-based virtual screening was also performed through molecular docking of the same flavonoid database using 11 target enzymes from Leishmania species including a model of Arginase enzyme homology. Finally, through a consensus analysis of the two techniques, it was sought to normalize the probability values, to verify compounds potentially active against leishmaniasis. Thus, it was possible to predict the potential of the Asteraceae family of flavonoids are active against some species of 11 Leishmania, contributing to the in silico studies of natural products against neglected diseases caused by protozoa.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESAs doenças negligenciadas afetam milhões de pessoas ao redor do mundo, uma delas é a leishmaniose causada por protozoários do gênero Leishmania, cujo tratamento ainda constitui um desafio para a ciência. Diversos grupos de pesquisa comprovaram que os produtos naturais têm sido uma fonte rica de compostos com atividade leishmanicida, dentre estes se destacam os flavonoides, amplamente encontrados nas espécies da família Asteraceae que, portanto, podem ser utilizados como marcadores taxonômicos em níveis hierárquicos mais baixos, além disso, nos últimos anos há um aumento dos estudos de triagem virtual que demostraram atividade antiprotozoária destes compostos. O objetivo deste trabalho é combinar metodologias de triagem virtual através de aprendizado de máquina utilizando descritores moleculares e o docking molecular, afim de predizer a potencial atividade leishmanicida de flavonoides isolados de espécies da família Asteraceae. O capítulo 2 apresenta uma publicação no livro Multi-Scale Approaches in Drug Discovery (2017) que relata as propriedades e o potencial farmacológico dos flavonoides de Asteraceae. Através da revisão de literatura, foi possível concluir que esses compostos podem se tornar candidatos a novos medicamentos com atividade multitarget contra agentes causadores de doenças protozoárias. O capítulo 3 aborda o estudo realizado para classificação das tribos de Asteraceae com base no número de ocorrências de flavonoides do nosso banco de dados interno (disponível em sistematx.ufpb.br) usando descritores calculados pelo software DRAGON 7.0. As 2371 ocorrências botânicas com seus respectivos 74 descritores de fragmentos moleculares foram utilizadas como dados de entrada no SOM Toolbox 2.0 (Matlab) para gerar Mapas Auto-Organizáveis (SOMs), classificando cinco tribos: Anthemideae (A), Gnaphalieae (G), Tageteae (T), Senecioneae (S) e Carduoideae (CR). Foram verificados os decritores com contribuição positiva e a localização de algumas moléculas nos mapas relativos a cada descritor, logo, o SOM pode ser uma ferramenta útil na busca de flavonoides com suas respectivas informações taxonômicas e atividades biológicas. No capítulo 4 foi realizada a construção de modelos de predição através do programa Knime utilizando descritores calculados pelo software Volsurf englobando 889 flavonoides cadastrados no nosso banco de dados (in-house databank) associado a outros bancos de dados (ChEMBL) contendo compostos com atividade frente a cepas de espécies de Leishmania. Também foi realizada uma triagem virtual baseada na estrutura do receptor através do docking molecular do mesmo banco de flavonoides utilizando 11 enzimas alvos de espécies de Leishmania incluindo um modelo de homologia da enzima Arginase. Por fim, mediante uma análise de consenso das duas técnicas, buscou-se normalizar os valores de probabilidades, para verificar compostos potencialmente ativos contra a leishmaniose. Desta forma, foi possível predizer o potencial dos flavonoides da família Asteraceae de serem ativos frente algumas espécies de Leishmania, contribuindo, para os estudos in silico de produtos naturais frente a doenças negligenciadas causadas por protozoários.Universidade Federal da ParaíbaBrasilFarmacologiaPrograma de Pós-Graduação em Produtos Naturais e Sintéticos BioativosUFPBScotti, Marcus Tulliushttp://lattes.cnpq.br/9312500923026323Cavalcanti, Élida Batista Vieira Sousa2018-08-01T16:29:13Z2018-08-012018-08-01T16:29:13Z2018-02-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://repositorio.ufpb.br/jspui/handle/123456789/11091porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2018-09-05T22:47:05Zoai:repositorio.ufpb.br:123456789/11091Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2018-09-05T22:47:05Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Estudos quimiotaxonômicos e triagem virtual de flavonoides isolados da família asteraceae com potencial atividade leishmanicida
title Estudos quimiotaxonômicos e triagem virtual de flavonoides isolados da família asteraceae com potencial atividade leishmanicida
spellingShingle Estudos quimiotaxonômicos e triagem virtual de flavonoides isolados da família asteraceae com potencial atividade leishmanicida
Cavalcanti, Élida Batista Vieira Sousa
Leishmania
Asteraceae
flavonoides
multitarget
Mapas Auto-Organizáveis
descritores moleculares
modelos de predição
docking
Leishmania
docking
flavonoids
multitarget
Asteraceae
Self-Organizing Maps
molecular descriptors
prediction models
CNPQ::CIENCIAS BIOLOGICAS::FARMACOLOGIA
title_short Estudos quimiotaxonômicos e triagem virtual de flavonoides isolados da família asteraceae com potencial atividade leishmanicida
title_full Estudos quimiotaxonômicos e triagem virtual de flavonoides isolados da família asteraceae com potencial atividade leishmanicida
title_fullStr Estudos quimiotaxonômicos e triagem virtual de flavonoides isolados da família asteraceae com potencial atividade leishmanicida
title_full_unstemmed Estudos quimiotaxonômicos e triagem virtual de flavonoides isolados da família asteraceae com potencial atividade leishmanicida
title_sort Estudos quimiotaxonômicos e triagem virtual de flavonoides isolados da família asteraceae com potencial atividade leishmanicida
author Cavalcanti, Élida Batista Vieira Sousa
author_facet Cavalcanti, Élida Batista Vieira Sousa
author_role author
dc.contributor.none.fl_str_mv Scotti, Marcus Tullius
http://lattes.cnpq.br/9312500923026323
dc.contributor.author.fl_str_mv Cavalcanti, Élida Batista Vieira Sousa
dc.subject.por.fl_str_mv Leishmania
Asteraceae
flavonoides
multitarget
Mapas Auto-Organizáveis
descritores moleculares
modelos de predição
docking
Leishmania
docking
flavonoids
multitarget
Asteraceae
Self-Organizing Maps
molecular descriptors
prediction models
CNPQ::CIENCIAS BIOLOGICAS::FARMACOLOGIA
topic Leishmania
Asteraceae
flavonoides
multitarget
Mapas Auto-Organizáveis
descritores moleculares
modelos de predição
docking
Leishmania
docking
flavonoids
multitarget
Asteraceae
Self-Organizing Maps
molecular descriptors
prediction models
CNPQ::CIENCIAS BIOLOGICAS::FARMACOLOGIA
description Neglected diseases affect millions of people around the world, one of them is leishmaniasis caused by protozoa of the genus Leishmania, whose treatment is still a challenge to science. Several research groups have confirmed that natural products have been a rich source of compounds with leishmanicidal activity, among them flavonoids, widely found in species of the Asteraceae family, which can therefore be used as taxonomic markers at lower hierarchical levels, in addition, in recent years there has been an increase in virtual screening studies that have demonstrated antiprotozoal activity of these compounds. The objective of this work is to combine virtual screening methodologies through machine learning using molecular descriptors and molecular docking in order to predict the potential leishmanicidal activity of flavonoids isolated from species of the Asteraceae family. Chapter 2 presents a publication in the book Multi-Scale Approaches in Drug Discovery (2017) that reports the properties and pharmacological potential of the flavonoids of Asteraceae. Through the literature review, it was possible to conclude that these compounds can become candidates for new drugs with multitarget activity against agents that cause protozoal diseases. Chapter 3 approaches the study conducted for the classification of Asteraceae tribes based on the number of occurrences of flavonoids in our internal database (available at www.sistematx.ufpb.br) using descriptors calculated by DRAGON 7.0 software. The 2371 botanical occurrences with respective 74 molecular fragment descriptors were used as input data in SOM Toolbox 2.0 (Matlab) to generate Self-Organizing Maps (SOMs), classifying five tribes: Anthemideae (A), Gnaphalieae (G), Tageteae (T), Senecioneae (S) and Carduoideae (CR). The positively contributed descriptors and the location of some molecules on the maps relative to each descriptor were verified, so SOM can be a useful tool in the search for flavonoids with their respective taxonomic information and biological activities.In chapter 4 the construction of prediction models was performed through the KNIME program using descriptors calculated by Volsurf software encompassing registered flavonoids in our database (in-house databank) associated with other databases (ChEMBL) containing compounds with activity against strains of Leishmania species. In Chapter 4, the construction of prediction models was performed through the KNIME program using descriptors calculated by the Volsurf software, including 889 flavonoids registered in our database (in-house databank) associated to other databases (ChEMBL) containing compounds with activity in front to strains of Leishmania species. Structure-based virtual screening was also performed through molecular docking of the same flavonoid database using 11 target enzymes from Leishmania species including a model of Arginase enzyme homology. Finally, through a consensus analysis of the two techniques, it was sought to normalize the probability values, to verify compounds potentially active against leishmaniasis. Thus, it was possible to predict the potential of the Asteraceae family of flavonoids are active against some species of 11 Leishmania, contributing to the in silico studies of natural products against neglected diseases caused by protozoa.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-01T16:29:13Z
2018-08-01
2018-08-01T16:29:13Z
2018-02-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/11091
url https://repositorio.ufpb.br/jspui/handle/123456789/11091
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Farmacologia
Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Farmacologia
Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| diretoria@ufpb.br
_version_ 1801842930553454592