Desenho computacional de metabólitos secundários de annonaceae: seleção e atividades antiparasitárias

Detalhes bibliográficos
Autor(a) principal: Menezes, Renata Priscila Barros de
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/123456789/25199
Resumo: Plants are rich sources of natural products, which in turn are a potential source of bioactive substances for the development of new drugs. The Annonaceae family is extremely rich in secondary metabolites, with great chemical diversity, presenting a vast variety of biological potential. The use of computational techniques for the discovery of new drugs has become increasingly common and necessary since it leads to a reduction in research costs and time. Computer-assisted drug development allows the exploration of large chemical databases, reducing these banks to sets of molecules with high potential for biological activity, a process known as virtual screening. Therefore, this study aims to perform computational studies to obtain promising molecules with biological activity for neglected diseases, Chagas disease and leishmaniasis from the Annonaceae secondary metabolite database. In addition to investigating the leishmanicidal potential of extracts from four Annona species (Annona glabra, Annona mucosa, Annona sylvatica and Annona dolabripetala) through a metabolomics approach using multivariate statistical analysis (PCA and PLS) and LC-MS data, to correlate spectroscopic data with leishmanicidal activity, seeking to suggest compounds or groups of compounds responsible for the biological activity. In chapter 1, a review of the biological activity studies conducted with species of the Annonaceae family was conducted, aiming to show how versatile and promising this family is in the search for new drugs. In chapter 2, a review was conducted on machine learning applied to QSAR, written in Portuguese, to approach the subject in a simple and didactic way for students and researchers who are starting in this very promising and important area. In chapter 3, based on the construction of a database with secondary metabolites already isolated from the Annonaceae family between 1970 and 2019, a chemotaxonomic analysis was performed using the class of diterpenes. Through this chemotaxonomic study it was possible to separate the Annoneae, Xylopieae and Miliuseae tribes according to the morphological and taxonomic separation of the family. This phenomenon makes it possible to predict the location of a particular diterpene in the Annoneae, Xylopiieae and Miliuseae tribes of the Annonaceae and to search for these secondary metabolites and their biological potential more effectively. In chapters 4 and 5, virtual screening studies based on ligand are conducted in search of molecules with potential antichagasic and leishmanicidal activity using the Annonaceae secondary metabolite database, consisting of 1860 molecules. The predictive models created for L. amazonensis and T. cruzi obtained an accuracy above 72%. For the two protozoa it was possible to identify potentially active molecules, select some of them and perform the in vitro test. For T. cruzi, 13-epicupressic acid was the most promising, as it was predicted as an active compound in the in silico study against the amastigote form of T. cruzi, in addition to having in vitro activity against the epimastigote form. As for L. amazonensis, the triterpene lupeol showed the best activity in in silico and in vitro biological assays for the promastigote form, in addition to having a probability of active potential greater than 77% against the amastigote form. In chapter 6, a metabolomic analysis was performed using multivariate statistical analysis (PCA and PLS) and LCMS data, to correlate spectroscopic data with leishmanicidal activity, seeking to suggest compounds or groups of compounds responsible for the biological activity of 4 Annona species.
id UFPB_55a24ef2d73081bbcb84d7582d6eae48
oai_identifier_str oai:repositorio.ufpb.br:123456789/25199
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Desenho computacional de metabólitos secundários de annonaceae: seleção e atividades antiparasitáriasComputer design of secondary metabolites of annonaceae: selection and antiparasitic activitiesAnnonaceaeQSARAprendizado de máquinaTriagem virtual baseada em liganteAntiparasitáriaMetabolomaMachine learningLigand-based virtual screeningAntiparasiticMetabolomicCNPQ::CIENCIAS BIOLOGICAS::FARMACOLOGIAPlants are rich sources of natural products, which in turn are a potential source of bioactive substances for the development of new drugs. The Annonaceae family is extremely rich in secondary metabolites, with great chemical diversity, presenting a vast variety of biological potential. The use of computational techniques for the discovery of new drugs has become increasingly common and necessary since it leads to a reduction in research costs and time. Computer-assisted drug development allows the exploration of large chemical databases, reducing these banks to sets of molecules with high potential for biological activity, a process known as virtual screening. Therefore, this study aims to perform computational studies to obtain promising molecules with biological activity for neglected diseases, Chagas disease and leishmaniasis from the Annonaceae secondary metabolite database. In addition to investigating the leishmanicidal potential of extracts from four Annona species (Annona glabra, Annona mucosa, Annona sylvatica and Annona dolabripetala) through a metabolomics approach using multivariate statistical analysis (PCA and PLS) and LC-MS data, to correlate spectroscopic data with leishmanicidal activity, seeking to suggest compounds or groups of compounds responsible for the biological activity. In chapter 1, a review of the biological activity studies conducted with species of the Annonaceae family was conducted, aiming to show how versatile and promising this family is in the search for new drugs. In chapter 2, a review was conducted on machine learning applied to QSAR, written in Portuguese, to approach the subject in a simple and didactic way for students and researchers who are starting in this very promising and important area. In chapter 3, based on the construction of a database with secondary metabolites already isolated from the Annonaceae family between 1970 and 2019, a chemotaxonomic analysis was performed using the class of diterpenes. Through this chemotaxonomic study it was possible to separate the Annoneae, Xylopieae and Miliuseae tribes according to the morphological and taxonomic separation of the family. This phenomenon makes it possible to predict the location of a particular diterpene in the Annoneae, Xylopiieae and Miliuseae tribes of the Annonaceae and to search for these secondary metabolites and their biological potential more effectively. In chapters 4 and 5, virtual screening studies based on ligand are conducted in search of molecules with potential antichagasic and leishmanicidal activity using the Annonaceae secondary metabolite database, consisting of 1860 molecules. The predictive models created for L. amazonensis and T. cruzi obtained an accuracy above 72%. For the two protozoa it was possible to identify potentially active molecules, select some of them and perform the in vitro test. For T. cruzi, 13-epicupressic acid was the most promising, as it was predicted as an active compound in the in silico study against the amastigote form of T. cruzi, in addition to having in vitro activity against the epimastigote form. As for L. amazonensis, the triterpene lupeol showed the best activity in in silico and in vitro biological assays for the promastigote form, in addition to having a probability of active potential greater than 77% against the amastigote form. In chapter 6, a metabolomic analysis was performed using multivariate statistical analysis (PCA and PLS) and LCMS data, to correlate spectroscopic data with leishmanicidal activity, seeking to suggest compounds or groups of compounds responsible for the biological activity of 4 Annona species.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESAs plantas são fontes ricas de produtos naturais, que por sua vez são fonte potencial de substâncias bioativas para o desenvolvimento de novos medicamentos. A família Annonaceae é extremamente rica em metabolitos secundários, com grande diversidade química, apresentando uma grande variedade de potencial biológico. O uso de técnicas computacionais para a descoberta de novos fármacos tem se tornado cada vez mais comum e necessário, uma vez que leva à redução de custos de pesquisa e tempo. O desenvolvimento de drogas assistido por computador permite a exploração de grandes bases de dados químicos, reduzindo esses bancos a conjuntos de moléculas com potencial elevado de atividade biológica, processo conhecido como triagem virtual. Portanto, este estudo tem como objetivo realizar estudos computacionais com vistas a obtenção de moléculas promissoras com atividade biológica para as doenças negligenciadas, doença de Chagas e leishmaniose a partir de banco de dados de metabólitos secundários de Annonaceae. Além de investigar o potencial leishmanicida de extratos de quatro espécies de Annona (Annona glabra, Annona mucosa, Annona sylvatica e Annona dolabripetala) por meio de uma abordagem metabolômica usando análise estatística multivariada (PCA e PLS) e dados de LC-MS, para correlacionar dados espectroscópicos com atividade leishmanicida, buscando sugerir compostos ou grupos de compostos responsáveis pela atividade biológica. No capítulo 1 foi realizada uma revisão dos estudos de atividade biológica realizados com espécies da família Annonaceae objetivando evidenciar quão versátil e promissora é essa família na busca por novas drogas. No capítulo 2 foi realizada uma revisão sobre aprendizado de máquina aplicado a QSAR, escrito em português, com intuito de abordar o assunto de forma simples e didática para estudantes e pesquisadores que estão iniciando nesta área tão promissora e importante. No capítulo 3 a partir da construção de um banco de dados com os metabolitos secundários já isolados da família Annonaceae entre os aos de 1970 e 2019, foi realizada uma análise quimiotaxonômica utilizando a classe de diterpenos. Através deste estudo quimiotaxonômico foi possível separar as tribos Annoneae, Xylopieae e Miliuseae de acordo com a separação morfológica e taxonômica da família. Esse fenômeno permite prever a localização de um determinado diterpeno nas tribos Annoneae, Xylopieae e Miliuseae das Annonaceae e buscar esses metabólitos secundários e seus potenciais biológicos de forma mais eficaz. Nos capítulos 4 e 5 são realizados estudos de triagem virtual baseada em ligante em busca de moléculas com potencial atividade antichagásica e leishmanicida utilizando o banco de dados de metabólitos secundários de Annonaceae, constituído por 1860 moléculas. Os modelos preditivos criados para L. amazonensis e T. cruzi obtiveram uma acurácia acima de 72%. Para os dois protozoários foi possível identificar moléculas potencialmente ativas, selecionar algumas delas e realizar o teste in vitro. Para o T. cruzi o ácido 13- epicupressico foi o mais promissor, pois foi previsto como composto ativo no estudo in silico contra a forma amastigota do T. cruzi, além de possuir atividade in vitro contra a forma epimastigota. Já para L. amazonensis O triterpeno lupeol, apresentou a melhor atividade em ensaios biológicos in silico e in vitro para a forma promastigota, além de possuir probabilidade de potencial ativo superior a 77% contra a forma amastigota. No capítulo 6 foi realizado uma análise metabolômica utilizando análise estatística multivariada (PCA e PLS) e dados de LC-MS, para correlacionar dados espectroscópicos com atividade leishmanicida, buscando sugerir compostos ou grupos de compostos responsáveis pela atividade biológica de 4 espécies de Annona.Universidade Federal da ParaíbaBrasilFarmacologiaPrograma de Pós-Graduação em Produtos Naturais e Sintéticos BioativosUFPBScotti, Marcus Tulliushttp://lattes.cnpq.br/9312500923026323Leitão, Suzana Guimarãeshttp://lattes.cnpq.br/0826727185770367Menezes, Renata Priscila Barros de2022-10-21T16:51:17Z2022-10-062022-10-21T16:51:17Z2022-08-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://repositorio.ufpb.br/jspui/handle/123456789/25199porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2022-10-25T12:12:44Zoai:repositorio.ufpb.br:123456789/25199Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2022-10-25T12:12:44Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Desenho computacional de metabólitos secundários de annonaceae: seleção e atividades antiparasitárias
Computer design of secondary metabolites of annonaceae: selection and antiparasitic activities
title Desenho computacional de metabólitos secundários de annonaceae: seleção e atividades antiparasitárias
spellingShingle Desenho computacional de metabólitos secundários de annonaceae: seleção e atividades antiparasitárias
Menezes, Renata Priscila Barros de
Annonaceae
QSAR
Aprendizado de máquina
Triagem virtual baseada em ligante
Antiparasitária
Metaboloma
Machine learning
Ligand-based virtual screening
Antiparasitic
Metabolomic
CNPQ::CIENCIAS BIOLOGICAS::FARMACOLOGIA
title_short Desenho computacional de metabólitos secundários de annonaceae: seleção e atividades antiparasitárias
title_full Desenho computacional de metabólitos secundários de annonaceae: seleção e atividades antiparasitárias
title_fullStr Desenho computacional de metabólitos secundários de annonaceae: seleção e atividades antiparasitárias
title_full_unstemmed Desenho computacional de metabólitos secundários de annonaceae: seleção e atividades antiparasitárias
title_sort Desenho computacional de metabólitos secundários de annonaceae: seleção e atividades antiparasitárias
author Menezes, Renata Priscila Barros de
author_facet Menezes, Renata Priscila Barros de
author_role author
dc.contributor.none.fl_str_mv Scotti, Marcus Tullius
http://lattes.cnpq.br/9312500923026323
Leitão, Suzana Guimarães
http://lattes.cnpq.br/0826727185770367
dc.contributor.author.fl_str_mv Menezes, Renata Priscila Barros de
dc.subject.por.fl_str_mv Annonaceae
QSAR
Aprendizado de máquina
Triagem virtual baseada em ligante
Antiparasitária
Metaboloma
Machine learning
Ligand-based virtual screening
Antiparasitic
Metabolomic
CNPQ::CIENCIAS BIOLOGICAS::FARMACOLOGIA
topic Annonaceae
QSAR
Aprendizado de máquina
Triagem virtual baseada em ligante
Antiparasitária
Metaboloma
Machine learning
Ligand-based virtual screening
Antiparasitic
Metabolomic
CNPQ::CIENCIAS BIOLOGICAS::FARMACOLOGIA
description Plants are rich sources of natural products, which in turn are a potential source of bioactive substances for the development of new drugs. The Annonaceae family is extremely rich in secondary metabolites, with great chemical diversity, presenting a vast variety of biological potential. The use of computational techniques for the discovery of new drugs has become increasingly common and necessary since it leads to a reduction in research costs and time. Computer-assisted drug development allows the exploration of large chemical databases, reducing these banks to sets of molecules with high potential for biological activity, a process known as virtual screening. Therefore, this study aims to perform computational studies to obtain promising molecules with biological activity for neglected diseases, Chagas disease and leishmaniasis from the Annonaceae secondary metabolite database. In addition to investigating the leishmanicidal potential of extracts from four Annona species (Annona glabra, Annona mucosa, Annona sylvatica and Annona dolabripetala) through a metabolomics approach using multivariate statistical analysis (PCA and PLS) and LC-MS data, to correlate spectroscopic data with leishmanicidal activity, seeking to suggest compounds or groups of compounds responsible for the biological activity. In chapter 1, a review of the biological activity studies conducted with species of the Annonaceae family was conducted, aiming to show how versatile and promising this family is in the search for new drugs. In chapter 2, a review was conducted on machine learning applied to QSAR, written in Portuguese, to approach the subject in a simple and didactic way for students and researchers who are starting in this very promising and important area. In chapter 3, based on the construction of a database with secondary metabolites already isolated from the Annonaceae family between 1970 and 2019, a chemotaxonomic analysis was performed using the class of diterpenes. Through this chemotaxonomic study it was possible to separate the Annoneae, Xylopieae and Miliuseae tribes according to the morphological and taxonomic separation of the family. This phenomenon makes it possible to predict the location of a particular diterpene in the Annoneae, Xylopiieae and Miliuseae tribes of the Annonaceae and to search for these secondary metabolites and their biological potential more effectively. In chapters 4 and 5, virtual screening studies based on ligand are conducted in search of molecules with potential antichagasic and leishmanicidal activity using the Annonaceae secondary metabolite database, consisting of 1860 molecules. The predictive models created for L. amazonensis and T. cruzi obtained an accuracy above 72%. For the two protozoa it was possible to identify potentially active molecules, select some of them and perform the in vitro test. For T. cruzi, 13-epicupressic acid was the most promising, as it was predicted as an active compound in the in silico study against the amastigote form of T. cruzi, in addition to having in vitro activity against the epimastigote form. As for L. amazonensis, the triterpene lupeol showed the best activity in in silico and in vitro biological assays for the promastigote form, in addition to having a probability of active potential greater than 77% against the amastigote form. In chapter 6, a metabolomic analysis was performed using multivariate statistical analysis (PCA and PLS) and LCMS data, to correlate spectroscopic data with leishmanicidal activity, seeking to suggest compounds or groups of compounds responsible for the biological activity of 4 Annona species.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-21T16:51:17Z
2022-10-06
2022-10-21T16:51:17Z
2022-08-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/25199
url https://repositorio.ufpb.br/jspui/handle/123456789/25199
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Farmacologia
Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Farmacologia
Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| diretoria@ufpb.br
_version_ 1801843002319044608