Performance of rainfall threshold for flood identification from ground- and satellite-based (sub) daily data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/22729 |
Resumo: | Great effort has been made over the last few decades to develop and improve methods for monitoring hydrological disasters. Among them, rainfall thresholds, defined as the minimum rainfall conditions that are likely to trigger hydrological disasters, are the most popular tool used to study the relationship between rainfall and hydrological disaster occurrences, highlighted due to their straightforward approach for application in different regions. Some factors make it difficult to determine rainfall thresholds, such as the quality of rainfall and disasters data, and the large distances between the rain gauges and the disaster. To overcome these limitations, the use of satellite-based precipitation products is a way out to characterize rainfall events that trigger disasters. Accordingly, this thesis aims to present an improved method of using a threshold of peak rainfall intensity for robust floods evaluation and warnings by applying probabilistic-based methods and taking into consideration the antecedent conditions. Moreover, this study assesses the quality of satellite-based precipitation products to create rainfall thresholds for floods monitoring. São Paulo State was selected as the study area because is a typical hot spot frequented by landslides and floods. In addition, São Paulo is the richest state in Brazil, with the largest number of floods, flash floods, and sub-daily rainfall data made available by public agencies. Results show that the use of tolerance levels and the delineating of an intermediate threshold by incorporating an exponential curve that relates rainfall intensity and Antecedent Precipitation Index (API) helped reduce significantly many uncertainties in the hydrological disasters monitoring. Moreover, the use of satellite-based products showed to be less accurate compared to rain gauges to characterize extreme rainfall events and delineating the thresholds, tending to underestimate the ground-based precipitation mainly for sub-daily scales. Although underestimating the ground-based data, the satellite-based products can be applied as an alternative source to develop warning systems, especially in areas with a lower density of rain gauges. Overall, the results found in this study showed to be helpful for decision-making by the implementation of flood monitoring and early warning systems, and, consequently to contribute to the development of more robust and/or complex flood models able to minimize the hydrological impacts, whether using ground-based or satellite-based data. |
id |
UFPB_6373d41ebd4af35f6f8896ca41b22f29 |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/22729 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Performance of rainfall threshold for flood identification from ground- and satellite-based (sub) daily dataDesastres naturaisPrecipitações extremasLimiares de precipitaçãoInundaçãoEnxurradaNatural disastersExtreme precipitationRainfall thresholdFloodsFlash floodsCNPQ::ENGENHARIAS::ENGENHARIA CIVILGreat effort has been made over the last few decades to develop and improve methods for monitoring hydrological disasters. Among them, rainfall thresholds, defined as the minimum rainfall conditions that are likely to trigger hydrological disasters, are the most popular tool used to study the relationship between rainfall and hydrological disaster occurrences, highlighted due to their straightforward approach for application in different regions. Some factors make it difficult to determine rainfall thresholds, such as the quality of rainfall and disasters data, and the large distances between the rain gauges and the disaster. To overcome these limitations, the use of satellite-based precipitation products is a way out to characterize rainfall events that trigger disasters. Accordingly, this thesis aims to present an improved method of using a threshold of peak rainfall intensity for robust floods evaluation and warnings by applying probabilistic-based methods and taking into consideration the antecedent conditions. Moreover, this study assesses the quality of satellite-based precipitation products to create rainfall thresholds for floods monitoring. São Paulo State was selected as the study area because is a typical hot spot frequented by landslides and floods. In addition, São Paulo is the richest state in Brazil, with the largest number of floods, flash floods, and sub-daily rainfall data made available by public agencies. Results show that the use of tolerance levels and the delineating of an intermediate threshold by incorporating an exponential curve that relates rainfall intensity and Antecedent Precipitation Index (API) helped reduce significantly many uncertainties in the hydrological disasters monitoring. Moreover, the use of satellite-based products showed to be less accurate compared to rain gauges to characterize extreme rainfall events and delineating the thresholds, tending to underestimate the ground-based precipitation mainly for sub-daily scales. Although underestimating the ground-based data, the satellite-based products can be applied as an alternative source to develop warning systems, especially in areas with a lower density of rain gauges. Overall, the results found in this study showed to be helpful for decision-making by the implementation of flood monitoring and early warning systems, and, consequently to contribute to the development of more robust and/or complex flood models able to minimize the hydrological impacts, whether using ground-based or satellite-based data.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESGrande esforço está sendo realizado durantes as últimas décadas para desenvolvimento de métodos de monitoramento de desastres hidrológicos. Dentre eles, os limiares de precipitação, definidos como a condição mínima de precipitação que são susceptíveis a deflagração desastres hidrológicos, são a ferramenta mais popular usada para estudar a relação entre precipitação e desastres hidrológicos, destacando-se devido à sua abordagem simples. Alguns fatores dificultam a determinação dos limiares de chuva, como a qualidade dos dados de chuva e desastres, e as grandes distâncias entre as estações pluviométricas e os desastres. Para superar essas limitações, o uso de produtos de precipitação por satélite é uma saída para caracterizar os eventos de chuva que desencadeiam desastres. Consequentemente, esta tese tem como objetivo apresentar um método melhorado para a delimitação de limiares de picos de intensidade de chuva para avaliação e alerta dos desastres, através da aplicação de métodos baseados em probabilística e levando em consideração as condições antecedentes ao desastre. Além disso, avaliar a qualidade dos produtos de precipitação baseados em satélite para criar limites de precipitação para o monitoramento de desastres hidrológicos. O Estado de São Paulo foi escolhido por ser uma região típica para ocorrências de deslizamentos e inundações. Além disso, São Paulo é o estado mais rico do Brasil, com o maior número de registros de inundações e enxurradas, bem como dados pluviométricos subdiários disponibilizados por órgãos públicos. Os resultados mostram que o uso de níveis de tolerância e o delineamento de um limiar intermediário pela incorporação de uma curva exponencial que relaciona a intensidade da chuva e o Índice de Precipitação Antecedente (API) ajudou a reduzir significativamente muitas incertezas no monitoramento de desastres hidrológicos. Além disso, a avaliação dos produtos baseados em satélite mostrou que eles apresentam menor acurácia em relação aos pluviômetros, tendendo a subestimar as medidas observadas in-situ, principalmente, para escalas subdiárias. No entanto, eles podem ser aplicados como fonte alternativa para o desenvolvimento de sistemas de alerta, principalmente, em áreas com menor densidade de pluviômetros. De forma geral, conclui se que os resultados encontrados devem ser úteis na tomada de decisão, na implementação de sistemas de monitoramento e alerta precoce de inundações, e na contribuição para o desenvolvimento de modelos mais robustos e/ou complexos para minimizar os impactos, seja utilizando dados in-situ ou baseados em satélite.Universidade Federal da ParaíbaBrasilEngenharia Civil e AmbientalPrograma de Pós-Graduação em Engenharia Civil e AmbientalUFPBAlmeida, Cristiano das Neveshttp://lattes.cnpq.br/5858373824027435Coelho, Victor Hugo Rabelohttp://lattes.cnpq.br/5109911884566474Ramos Filho, Geraldo Moura2022-04-20T19:26:03Z2021-12-032022-04-20T19:26:03Z2021-10-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://repositorio.ufpb.br/jspui/handle/123456789/22729porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2022-04-25T12:12:51Zoai:repositorio.ufpb.br:123456789/22729Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2022-04-25T12:12:51Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Performance of rainfall threshold for flood identification from ground- and satellite-based (sub) daily data |
title |
Performance of rainfall threshold for flood identification from ground- and satellite-based (sub) daily data |
spellingShingle |
Performance of rainfall threshold for flood identification from ground- and satellite-based (sub) daily data Ramos Filho, Geraldo Moura Desastres naturais Precipitações extremas Limiares de precipitação Inundação Enxurrada Natural disasters Extreme precipitation Rainfall threshold Floods Flash floods CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
title_short |
Performance of rainfall threshold for flood identification from ground- and satellite-based (sub) daily data |
title_full |
Performance of rainfall threshold for flood identification from ground- and satellite-based (sub) daily data |
title_fullStr |
Performance of rainfall threshold for flood identification from ground- and satellite-based (sub) daily data |
title_full_unstemmed |
Performance of rainfall threshold for flood identification from ground- and satellite-based (sub) daily data |
title_sort |
Performance of rainfall threshold for flood identification from ground- and satellite-based (sub) daily data |
author |
Ramos Filho, Geraldo Moura |
author_facet |
Ramos Filho, Geraldo Moura |
author_role |
author |
dc.contributor.none.fl_str_mv |
Almeida, Cristiano das Neves http://lattes.cnpq.br/5858373824027435 Coelho, Victor Hugo Rabelo http://lattes.cnpq.br/5109911884566474 |
dc.contributor.author.fl_str_mv |
Ramos Filho, Geraldo Moura |
dc.subject.por.fl_str_mv |
Desastres naturais Precipitações extremas Limiares de precipitação Inundação Enxurrada Natural disasters Extreme precipitation Rainfall threshold Floods Flash floods CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
topic |
Desastres naturais Precipitações extremas Limiares de precipitação Inundação Enxurrada Natural disasters Extreme precipitation Rainfall threshold Floods Flash floods CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
description |
Great effort has been made over the last few decades to develop and improve methods for monitoring hydrological disasters. Among them, rainfall thresholds, defined as the minimum rainfall conditions that are likely to trigger hydrological disasters, are the most popular tool used to study the relationship between rainfall and hydrological disaster occurrences, highlighted due to their straightforward approach for application in different regions. Some factors make it difficult to determine rainfall thresholds, such as the quality of rainfall and disasters data, and the large distances between the rain gauges and the disaster. To overcome these limitations, the use of satellite-based precipitation products is a way out to characterize rainfall events that trigger disasters. Accordingly, this thesis aims to present an improved method of using a threshold of peak rainfall intensity for robust floods evaluation and warnings by applying probabilistic-based methods and taking into consideration the antecedent conditions. Moreover, this study assesses the quality of satellite-based precipitation products to create rainfall thresholds for floods monitoring. São Paulo State was selected as the study area because is a typical hot spot frequented by landslides and floods. In addition, São Paulo is the richest state in Brazil, with the largest number of floods, flash floods, and sub-daily rainfall data made available by public agencies. Results show that the use of tolerance levels and the delineating of an intermediate threshold by incorporating an exponential curve that relates rainfall intensity and Antecedent Precipitation Index (API) helped reduce significantly many uncertainties in the hydrological disasters monitoring. Moreover, the use of satellite-based products showed to be less accurate compared to rain gauges to characterize extreme rainfall events and delineating the thresholds, tending to underestimate the ground-based precipitation mainly for sub-daily scales. Although underestimating the ground-based data, the satellite-based products can be applied as an alternative source to develop warning systems, especially in areas with a lower density of rain gauges. Overall, the results found in this study showed to be helpful for decision-making by the implementation of flood monitoring and early warning systems, and, consequently to contribute to the development of more robust and/or complex flood models able to minimize the hydrological impacts, whether using ground-based or satellite-based data. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-03 2021-10-27 2022-04-20T19:26:03Z 2022-04-20T19:26:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/22729 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/22729 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia Civil e Ambiental Programa de Pós-Graduação em Engenharia Civil e Ambiental UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia Civil e Ambiental Programa de Pós-Graduação em Engenharia Civil e Ambiental UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801842992200286208 |