Previsão e análise do ICMS na Paraíba
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/23345 |
Resumo: | The search to anticipate the facts is quite common throughout the ages, considering something as likely based on clues, be they scientific or popular beliefs. In the economic context, forecasts are necessary to plan actions in advance and conclude on the main interventions and their likely consequences, because if the budget is overestimated, will lead to over-spending, which may lead to a deficit or contingencing, which is the temporary reduction of expenditure to reach the fiscal target and if resources are underestimated, which may hinder urgent and/or extremely important actions. In this way the present dissertation presents a modeling methodology, forecasting and analysing the collection of the Transaction Tax on the Movement of Goods and on the Provision of Interstate and Inter-municipal Transport and Communication Services of the State of Paraíba (ICMS-PB)for representing more than 80% of the State's tax revenue. Data were collected from January 1997 to April 2021, which is truncated into distinct dates generating four series to verify if the dynamics of the series vary. So it is using, for the four series, the Holt-Winters exponential smoothing algorithms with additive and multiplicative seasonality, and Box-Jenkins models with the integrated seasonal auto-regressive models of moving averages (SARIMA) and SARIMAX with the variable dummy referent with the dummy variable referring to the COVID-19 pandemic, trend and seasonality as regressive variables. Comparing them between themselves and with the real values of the ICMS of Paraíba. Finally, considering the mean quadratic error and total error obtained through the relationship between collections and forecasts, the models that generated the best forecasts for each series were selected, displaying the graph with the real values, the forecasts and the 95% confidence interval, verifyng the circumstances that the models best fit to predict the ICMS of Paraíba. |
id |
UFPB_8ee4d89262dbc05cdb261b43eb3a4ab2 |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/23345 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Previsão e análise do ICMS na ParaíbaICMSHolt-WintersSARIMAImposto-ParaíbaTax-ParaíbaCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOThe search to anticipate the facts is quite common throughout the ages, considering something as likely based on clues, be they scientific or popular beliefs. In the economic context, forecasts are necessary to plan actions in advance and conclude on the main interventions and their likely consequences, because if the budget is overestimated, will lead to over-spending, which may lead to a deficit or contingencing, which is the temporary reduction of expenditure to reach the fiscal target and if resources are underestimated, which may hinder urgent and/or extremely important actions. In this way the present dissertation presents a modeling methodology, forecasting and analysing the collection of the Transaction Tax on the Movement of Goods and on the Provision of Interstate and Inter-municipal Transport and Communication Services of the State of Paraíba (ICMS-PB)for representing more than 80% of the State's tax revenue. Data were collected from January 1997 to April 2021, which is truncated into distinct dates generating four series to verify if the dynamics of the series vary. So it is using, for the four series, the Holt-Winters exponential smoothing algorithms with additive and multiplicative seasonality, and Box-Jenkins models with the integrated seasonal auto-regressive models of moving averages (SARIMA) and SARIMAX with the variable dummy referent with the dummy variable referring to the COVID-19 pandemic, trend and seasonality as regressive variables. Comparing them between themselves and with the real values of the ICMS of Paraíba. Finally, considering the mean quadratic error and total error obtained through the relationship between collections and forecasts, the models that generated the best forecasts for each series were selected, displaying the graph with the real values, the forecasts and the 95% confidence interval, verifyng the circumstances that the models best fit to predict the ICMS of Paraíba.NenhumaA busca por antecipar os fatos é bastante comum ao longo dos tempos, considerando algo como provável com base em indícios, sejam eles científicos ou por crenças populares. No âmbito econômico as previsões são necessárias para que se possa planejar as ações com antecedência e concluir sobre as principais intervenções e suas prováveis consequências. Se o orçamento for superestimado, acarretará em gastos acima do previsto o que poderá gerar um déficit ou contingenciamento, que é a redução temporária das despesas para atingir a meta fiscal. Porém se os recursos forem subestimado, o que pode dificultar realizações ações de urgência, e/ou de extrema importância. Desta forma a presente dissertação apresenta uma metodologia de modelagem, previsão e análise das arrecadações do Imposto sobre Operações Relativas à Circulação de Mercadorias e sobre Prestações de Serviços de Transporte Interestadual e Intermunicipal e de Comunicação do Estado da Paraíba (ICMS-PB), por representar mais de 80% da receita tributária do Estado. Foram coletados dados de janeiro de 1997 a abril de 2021, que é truncada em datas distintas gerando quatro séries para verificar se a dinâmica da série varia. Assim é utilizando, para as quatro série, os algoritmos de alisamento exponencial Holt-Winters com sazonalidade aditiva e multiplicativa, e modelos Box-Jenkins com os modelos sazonais auto-regressivos integrados de médias móveis (SARIMA) e o SARIMAX com a variá- vel dummy referente a pandemia do COVID-19, a tendência e a sazonalidade como variáveis de regressivas. Comparando-as entre se e com os valores reais das arrecada ções do ICMS da Paraíba. Finalmente, considerando o erro quadrático médio e erro total obtidos através da relação entre as arrecadações e previsões, selecionou-se os modelos que geraram as melhores previsões para cada série, exibindo o gráfico com os valoreis reais, as previsões e o intervalo de confiança de 95%, verificando quais as circunstâncias que os modelos melhor se adéqua para prever o ICMS da Paraíba.Universidade Federal da ParaíbaBrasilInformáticaPrograma de Pós-Graduação em Modelagem Matemática e computacionalUFPBSouza, Tatiene Correia dehttp://lattes.cnpq.br/4055146648812877Azevêdo, Melquisedec Anselmo da Costa2022-07-08T19:20:31Z2021-08-212022-07-08T19:20:31Z2021-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/23345porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2022-08-09T12:59:56Zoai:repositorio.ufpb.br:123456789/23345Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2022-08-09T12:59:56Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Previsão e análise do ICMS na Paraíba |
title |
Previsão e análise do ICMS na Paraíba |
spellingShingle |
Previsão e análise do ICMS na Paraíba Azevêdo, Melquisedec Anselmo da Costa ICMS Holt-Winters SARIMA Imposto-Paraíba Tax-Paraíba CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Previsão e análise do ICMS na Paraíba |
title_full |
Previsão e análise do ICMS na Paraíba |
title_fullStr |
Previsão e análise do ICMS na Paraíba |
title_full_unstemmed |
Previsão e análise do ICMS na Paraíba |
title_sort |
Previsão e análise do ICMS na Paraíba |
author |
Azevêdo, Melquisedec Anselmo da Costa |
author_facet |
Azevêdo, Melquisedec Anselmo da Costa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Souza, Tatiene Correia de http://lattes.cnpq.br/4055146648812877 |
dc.contributor.author.fl_str_mv |
Azevêdo, Melquisedec Anselmo da Costa |
dc.subject.por.fl_str_mv |
ICMS Holt-Winters SARIMA Imposto-Paraíba Tax-Paraíba CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
ICMS Holt-Winters SARIMA Imposto-Paraíba Tax-Paraíba CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
The search to anticipate the facts is quite common throughout the ages, considering something as likely based on clues, be they scientific or popular beliefs. In the economic context, forecasts are necessary to plan actions in advance and conclude on the main interventions and their likely consequences, because if the budget is overestimated, will lead to over-spending, which may lead to a deficit or contingencing, which is the temporary reduction of expenditure to reach the fiscal target and if resources are underestimated, which may hinder urgent and/or extremely important actions. In this way the present dissertation presents a modeling methodology, forecasting and analysing the collection of the Transaction Tax on the Movement of Goods and on the Provision of Interstate and Inter-municipal Transport and Communication Services of the State of Paraíba (ICMS-PB)for representing more than 80% of the State's tax revenue. Data were collected from January 1997 to April 2021, which is truncated into distinct dates generating four series to verify if the dynamics of the series vary. So it is using, for the four series, the Holt-Winters exponential smoothing algorithms with additive and multiplicative seasonality, and Box-Jenkins models with the integrated seasonal auto-regressive models of moving averages (SARIMA) and SARIMAX with the variable dummy referent with the dummy variable referring to the COVID-19 pandemic, trend and seasonality as regressive variables. Comparing them between themselves and with the real values of the ICMS of Paraíba. Finally, considering the mean quadratic error and total error obtained through the relationship between collections and forecasts, the models that generated the best forecasts for each series were selected, displaying the graph with the real values, the forecasts and the 95% confidence interval, verifyng the circumstances that the models best fit to predict the ICMS of Paraíba. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-21 2021-07-29 2022-07-08T19:20:31Z 2022-07-08T19:20:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/23345 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/23345 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Informática Programa de Pós-Graduação em Modelagem Matemática e computacional UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Informática Programa de Pós-Graduação em Modelagem Matemática e computacional UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801842995768590336 |