Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens

Detalhes bibliográficos
Autor(a) principal: Queiroga, Eduardo Vieira
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/tede/9249
Resumo: Many computational problems are considered to be hard due to their combinatorial nature. In such cases, the use of exaustive search techniques for solving medium and large size instances becomes unfeasible. Some data clustering and image segmentation problems belong to NP-Hard class, and require an adequate treatment by means of heuristic techniques such as metaheuristics. Data clustering is a set of problems in the fields of pattern recognition and unsupervised machine learning which aims at finding groups (or clusters) of similar objects in a benchmark dataset, using a predetermined measure of similarity. The partitional clustering problem aims at completely separating the data in disjont and non-empty clusters. For center-based clustering methods, the minimal intracluster distance criterion is one of the most employed. This work proposes an approach based on the metaheuristic Continuous Greedy Randomized Adaptive Search Procedure (CGRASP). High quality results were obtained through comparative experiments between the proposed method and other metaheuristics from the literature. In the computational vision field, image segmentation is the process of partitioning an image in regions of interest (set of pixels) without allowing overlap. Histogram thresholding is one of the simplest types of segmentation for images in grayscale. Thes Otsu’s method is one of the most populars and it proposes the search for the thresholds that maximize the variance between the segments. For images with deep levels of gray, exhaustive search techniques demand a high computational cost, since the number of possible solutions grows exponentially with an increase in the number of thresholds. Therefore, metaheuristics have been playing an important role in finding good quality thresholds. In this work, an approach based on Quantum-behaved Particle Swarm Optimization (QPSO) were investigated for multilevel thresholding of available images in the literature. A local search based on Variable Neighborhood Descent (VND) was proposed to improve the convergence of the search for the thresholds. An specific application of thresholding for electronic microscopy images for microstructural analysis of cementitious materials was investigated, as well as graph algorithms to crack detection and feature extraction.
id UFPB_9b943df1bd38c5876761e9b6747db3e4
oai_identifier_str oai:repositorio.ufpb.br:tede/9249
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Abordagens meta-heurísticas para clusterização de dados e segmentação de imagensOtimizaçãoMeta-heurísticasClusterização particionalSegmentação de imagensOptimizationMetaheuristicsPartitional clusteringImage segmentationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMany computational problems are considered to be hard due to their combinatorial nature. In such cases, the use of exaustive search techniques for solving medium and large size instances becomes unfeasible. Some data clustering and image segmentation problems belong to NP-Hard class, and require an adequate treatment by means of heuristic techniques such as metaheuristics. Data clustering is a set of problems in the fields of pattern recognition and unsupervised machine learning which aims at finding groups (or clusters) of similar objects in a benchmark dataset, using a predetermined measure of similarity. The partitional clustering problem aims at completely separating the data in disjont and non-empty clusters. For center-based clustering methods, the minimal intracluster distance criterion is one of the most employed. This work proposes an approach based on the metaheuristic Continuous Greedy Randomized Adaptive Search Procedure (CGRASP). High quality results were obtained through comparative experiments between the proposed method and other metaheuristics from the literature. In the computational vision field, image segmentation is the process of partitioning an image in regions of interest (set of pixels) without allowing overlap. Histogram thresholding is one of the simplest types of segmentation for images in grayscale. Thes Otsu’s method is one of the most populars and it proposes the search for the thresholds that maximize the variance between the segments. For images with deep levels of gray, exhaustive search techniques demand a high computational cost, since the number of possible solutions grows exponentially with an increase in the number of thresholds. Therefore, metaheuristics have been playing an important role in finding good quality thresholds. In this work, an approach based on Quantum-behaved Particle Swarm Optimization (QPSO) were investigated for multilevel thresholding of available images in the literature. A local search based on Variable Neighborhood Descent (VND) was proposed to improve the convergence of the search for the thresholds. An specific application of thresholding for electronic microscopy images for microstructural analysis of cementitious materials was investigated, as well as graph algorithms to crack detection and feature extraction.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESMuitos problemas computacionais s˜ao considerados dif´ıceis devido `a sua natureza combinat´oria. Para esses problemas, o uso de t´ecnicas de busca exaustiva para resolver instˆancias de m´edio e grande porte torna-se impratic´avel. Quando modelados como problemas de otimiza¸c˜ao, alguns problemas de clusteriza¸c˜ao de dados e segmenta¸c˜ao de imagens pertencem `a classe NP-Dif´ıcil e requerem um tratamento adequado por m´etodos heur´ısticos. Clusteriza¸c˜ao de dados ´e um vasto conjunto de problemas em reconhecimento de padr˜oes e aprendizado de m´aquina n˜ao-supervisionado, cujo objetivo ´e encontrar grupos (ou clusters) de objetos similares em uma base de dados, utilizando uma medida de similaridade preestabelecida. O problema de clusteriza¸c˜ao particional consiste em separar completamente os dados em conjuntos disjuntos e n˜ao vazios. Para m´etodos de clusteriza ¸c˜ao baseados em centros de cluster, minimizar a soma das distˆancias intracluster ´e um dos crit´erios mais utilizados. Para tratar este problema, ´e proposta uma abordagem baseada na meta-heur´ıstica Continuous Greedy Randomized Adaptive Search Procedure (C-GRASP). Resultados de alta qualidade foram obtidos atrav´es de experimentos envolvendo o algoritmo proposto e outras meta-heur´ısticas da literatura. Em vis˜ao computacional, segmenta¸c˜ao de imagens ´e o processo de particionar uma imagem em regi˜oes de interesse (conjuntos de pixels) sem que haja sobreposi¸c˜ao. Um dos tipos mais simples de segmenta¸c˜ao ´e a limiariza¸c˜ao do histograma para imagens em n´ıvel de cinza. O m´etodo de Otsu ´e um dos mais populares e prop˜oe a busca pelos limiares que maximizam a variˆancia entre os segmentos. Para imagens com grande profundidade de cinza, t´ecnicas de busca exaustiva possuem alto custo computacional, uma vez que o n´umero de solu¸c˜oes poss´ıveis cresce exponencialmente com o aumento no n´umero de limiares. Dessa forma, as meta-heur´ısticas tem desempenhado um papel importante em encontrar limiares de boa qualidade. Neste trabalho, uma abordagem baseada em Quantum-behaved Particle Swarm Optimization (QPSO) foi investigada para limiariza¸c˜ao multin´ıvel de imagens dispon´ıveis na literatura. Uma busca local baseada em Variable Neighborhood Descent (VND) foi proposta para acelerar a convergˆencia da busca pelos limiares. Al´em disso, uma aplica¸c˜ao espec´ıfica de segmenta¸c˜ao de imagens de microscopia eletrˆonica para an´alise microestrutural de materiais ciment´ıcios foi investigada, bem como a utiliza¸c˜ao de algoritmos em grafos para detec¸c˜ao de trincas e extra¸c˜ao de caracter´ısticas de interesse.Universidade Federal da ParaíbaBrasilInformáticaPrograma de Pós-Graduação em InformáticaUFPBCabral, Lucídio dos Anjos Formigahttp://lattes.cnpq.br/6699185881827288Queiroga, Eduardo Vieira2017-08-14T11:28:15Z2018-07-21T00:14:59Z2018-07-21T00:14:59Z2017-02-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfQUEIROGA, Eduardo Vieira. Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens. 2017. 88 f. Dissertação (Mestrado em Informática)-Universidade Federal da Paraíba, João Pessoa, 2017.https://repositorio.ufpb.br/jspui/handle/tede/9249porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2018-09-06T00:41:03Zoai:repositorio.ufpb.br:tede/9249Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2018-09-06T00:41:03Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens
title Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens
spellingShingle Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens
Queiroga, Eduardo Vieira
Otimização
Meta-heurísticas
Clusterização particional
Segmentação de imagens
Optimization
Metaheuristics
Partitional clustering
Image segmentation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens
title_full Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens
title_fullStr Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens
title_full_unstemmed Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens
title_sort Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens
author Queiroga, Eduardo Vieira
author_facet Queiroga, Eduardo Vieira
author_role author
dc.contributor.none.fl_str_mv Cabral, Lucídio dos Anjos Formiga
http://lattes.cnpq.br/6699185881827288
dc.contributor.author.fl_str_mv Queiroga, Eduardo Vieira
dc.subject.por.fl_str_mv Otimização
Meta-heurísticas
Clusterização particional
Segmentação de imagens
Optimization
Metaheuristics
Partitional clustering
Image segmentation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Otimização
Meta-heurísticas
Clusterização particional
Segmentação de imagens
Optimization
Metaheuristics
Partitional clustering
Image segmentation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Many computational problems are considered to be hard due to their combinatorial nature. In such cases, the use of exaustive search techniques for solving medium and large size instances becomes unfeasible. Some data clustering and image segmentation problems belong to NP-Hard class, and require an adequate treatment by means of heuristic techniques such as metaheuristics. Data clustering is a set of problems in the fields of pattern recognition and unsupervised machine learning which aims at finding groups (or clusters) of similar objects in a benchmark dataset, using a predetermined measure of similarity. The partitional clustering problem aims at completely separating the data in disjont and non-empty clusters. For center-based clustering methods, the minimal intracluster distance criterion is one of the most employed. This work proposes an approach based on the metaheuristic Continuous Greedy Randomized Adaptive Search Procedure (CGRASP). High quality results were obtained through comparative experiments between the proposed method and other metaheuristics from the literature. In the computational vision field, image segmentation is the process of partitioning an image in regions of interest (set of pixels) without allowing overlap. Histogram thresholding is one of the simplest types of segmentation for images in grayscale. Thes Otsu’s method is one of the most populars and it proposes the search for the thresholds that maximize the variance between the segments. For images with deep levels of gray, exhaustive search techniques demand a high computational cost, since the number of possible solutions grows exponentially with an increase in the number of thresholds. Therefore, metaheuristics have been playing an important role in finding good quality thresholds. In this work, an approach based on Quantum-behaved Particle Swarm Optimization (QPSO) were investigated for multilevel thresholding of available images in the literature. A local search based on Variable Neighborhood Descent (VND) was proposed to improve the convergence of the search for the thresholds. An specific application of thresholding for electronic microscopy images for microstructural analysis of cementitious materials was investigated, as well as graph algorithms to crack detection and feature extraction.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-14T11:28:15Z
2017-02-17
2018-07-21T00:14:59Z
2018-07-21T00:14:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv QUEIROGA, Eduardo Vieira. Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens. 2017. 88 f. Dissertação (Mestrado em Informática)-Universidade Federal da Paraíba, João Pessoa, 2017.
https://repositorio.ufpb.br/jspui/handle/tede/9249
identifier_str_mv QUEIROGA, Eduardo Vieira. Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens. 2017. 88 f. Dissertação (Mestrado em Informática)-Universidade Federal da Paraíba, João Pessoa, 2017.
url https://repositorio.ufpb.br/jspui/handle/tede/9249
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Informática
Programa de Pós-Graduação em Informática
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Informática
Programa de Pós-Graduação em Informática
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| diretoria@ufpb.br
_version_ 1801842904470126592