Fracionamento de bagaço de cana-de-açúcar combinando tratamentos com solvente eutético profundo e ácido diluído
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/27984 |
Resumo: | The Brazilian sugar and alcohol industry generates more than 640 million tons of sugarcane annually and approximately 180 million tons of sugarcane bagasse. The use of bagasse to produce second-generation ethanol can increase the national production capacity of ethanol. For this purpose, it is necessary to break the recalcitrant structure of the biomass, preferably taking advantage of the generated lignin and hemicellulose fractions, in a biorefinery context. In this work, treatment with a deep eutectic solvent based on choline chlorine and urea was followed by hydrolysis using dilute sulfuric acid for the removal of lignin, conversion of hemicellulose into fermentable xylose and beneficiation of bagasse by increasing its cellulose content. The first treatment extracted 50% of the lignin present and the resulting delignified biomass, chosen from 34% cellulose, 12% lignin and 19% hemicellulose, was used to optimize acid hydrolysis through a Central Composite Experimental Design, optimizing the sulfuric acid concentration and reaction time. The proposed quadratic mathematical model presented R2 = 0.94 and explained 93.8% of the variation in the experimental data, with the quadratic contributions of acid and time, the linear contribution of acid and the linear combination of the two factors being manifested, with 5% of uncertain statistics. The optimum point corresponded to 1.1% sulfuric acid and a time of 59 min 24 s. The hydrolyzed liquor obtained under these conditions presented 18 g L-1 of xylose without the presence of fermentation inhibitors and the final biomass residue had its cellulose content increased to 51%, due to the removal of lignin and hemicellulose, which now represents 16 % and 8% of the composition, respectively. The increase in the proportion of cellulose resulted in an increase in the crystallinity index, which went from 55% in the in natura sample to 58% after lignin removal and 64% after acid hydrolysis. When applying the optimal conditions of hydrolysis to the biomass in natura, concentrations of xylose and cellulose similar to those obtained in the hydrolysis of the biomass treated with the eutectic solvent were found, however the concentration of lignin, the most recalcitrant component, was preserved in 24%, not having been recovered separately. The combined treatment of lignin extraction by eutectic solvent with acid hydrolysis was successful in the separation of the fractions, with removal of about 50% of the lignin from the bagasse, 96% of efficiency of conversion of hemicellulose into xylose and approximately 40% of increase in the content of content cellulose. |
id |
UFPB_e6e4fd32443ff19faffdab5e0b7d4c22 |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/27984 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Fracionamento de bagaço de cana-de-açúcar combinando tratamentos com solvente eutético profundo e ácido diluídoCana-de-açúcar - EtanolBiomassa lignocelulósicaBiorrefinariaXiloseSugar cane - EthanolLignocellulosic biomassBiorefineryXyloseCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICAThe Brazilian sugar and alcohol industry generates more than 640 million tons of sugarcane annually and approximately 180 million tons of sugarcane bagasse. The use of bagasse to produce second-generation ethanol can increase the national production capacity of ethanol. For this purpose, it is necessary to break the recalcitrant structure of the biomass, preferably taking advantage of the generated lignin and hemicellulose fractions, in a biorefinery context. In this work, treatment with a deep eutectic solvent based on choline chlorine and urea was followed by hydrolysis using dilute sulfuric acid for the removal of lignin, conversion of hemicellulose into fermentable xylose and beneficiation of bagasse by increasing its cellulose content. The first treatment extracted 50% of the lignin present and the resulting delignified biomass, chosen from 34% cellulose, 12% lignin and 19% hemicellulose, was used to optimize acid hydrolysis through a Central Composite Experimental Design, optimizing the sulfuric acid concentration and reaction time. The proposed quadratic mathematical model presented R2 = 0.94 and explained 93.8% of the variation in the experimental data, with the quadratic contributions of acid and time, the linear contribution of acid and the linear combination of the two factors being manifested, with 5% of uncertain statistics. The optimum point corresponded to 1.1% sulfuric acid and a time of 59 min 24 s. The hydrolyzed liquor obtained under these conditions presented 18 g L-1 of xylose without the presence of fermentation inhibitors and the final biomass residue had its cellulose content increased to 51%, due to the removal of lignin and hemicellulose, which now represents 16 % and 8% of the composition, respectively. The increase in the proportion of cellulose resulted in an increase in the crystallinity index, which went from 55% in the in natura sample to 58% after lignin removal and 64% after acid hydrolysis. When applying the optimal conditions of hydrolysis to the biomass in natura, concentrations of xylose and cellulose similar to those obtained in the hydrolysis of the biomass treated with the eutectic solvent were found, however the concentration of lignin, the most recalcitrant component, was preserved in 24%, not having been recovered separately. The combined treatment of lignin extraction by eutectic solvent with acid hydrolysis was successful in the separation of the fractions, with removal of about 50% of the lignin from the bagasse, 96% of efficiency of conversion of hemicellulose into xylose and approximately 40% of increase in the content of content cellulose.NenhumaA indústria sucroalcooleira brasileira gera mais de 640 milhões de toneladas de cana-de-açúcar anualmente e aproximadamente 180 milhões de toneladas de bagaço-de-cana. O aproveitamento do bagaço para a produção de etanol de segunda geração pode aumentar a capacidade produtiva nacional de etanol. Para esse propósito, é necessário quebrar a estrutura recalcitrante da biomassa, preferencialmente aproveitando as frações de lignina e hemicelulose geradas, num contexto de biorrefinaria. Neste trabalho, tratamento com solvente eutético profundo a base de cloreto de colina e ureia foi combinado com hidrólise usando ácido sulfúrico diluído para a extração de lignina, conversão de hemicelulose em xilose fermentável e beneficiamento do bagaço pelo aumento do seu teor de celulose. O primeiro tratamento extraiu 50% da lignina presente e a biomassa deslignificada resultante, constituída de 34% de celulose 12% de lignina e 19% de hemicelulose foi utilizada para otimização da hidrólise ácida através de um Planejamento Experimental Composto Central, sendo otimizados os fatores concentração de ácido sulfúrico e tempo de reação. O modelo matemático quadrático proposto apresentou R2 = 0,94 e explicou 93,8% da variação dos dados experimentais, sendo significativas as contribuições quadráticas do ácido e tempo, a contribuição linear do ácido e a combinação linear dos dois fatores, com 5% de incerteza. O ponto ótimo correspondeu a 1,1% de ácido sulfúrico e tempo de 59 min 24 s. O licor obtido nestas condições apresentou 18 g L-1 de xilose sem a presença de inibidores da fermentação e o resíduo final de biomassa teve o teor de celulose aumentado para 51%, devido a remoção de lignina e hemicelulose, que passaram a representar 16% e 8% da composição, respectivamente. O aumento na proporção de celulose resultou em aumento do índice de cristalinidade, que passou de 55% na amostra in natura para 58% após extração de lignina e 64% após hidrólise ácida. Ao se aplicar as condições ótimas de hidrólise na biomassa in natura sem o tratamento com o solvente eutético, foram obtidas praticamente as mesmas concentrações de xilose no licor e de celulose no resíduo, no entanto a concentração de lignina, componente mais recalcitrante, permaneceu preservada em 24%, não tendo sido recuperada em separado. O tratamento combinado de extração de lignina usando DES com a hidrólise ácida foi bem-sucedido em separar as frações, com remoção de cerca de 50% da lignina do bagaço, 96% de eficiência de conversão de hemicelulose em xilose de e aproximadamente 40% de aumento no teor de celulose.Universidade Federal da ParaíbaBrasilQuímicaPrograma de Pós-Graduação em QuímicaUFPBPontes, Liliana de Fátima Bezerra Lira dehttp://lattes.cnpq.br/0438588394065892Souza, Layanny Samara da Silva2023-08-23T12:19:48Z2023-03-262023-08-23T12:19:48Z2023-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/27984porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2023-08-24T06:03:54Zoai:repositorio.ufpb.br:123456789/27984Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2023-08-24T06:03:54Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Fracionamento de bagaço de cana-de-açúcar combinando tratamentos com solvente eutético profundo e ácido diluído |
title |
Fracionamento de bagaço de cana-de-açúcar combinando tratamentos com solvente eutético profundo e ácido diluído |
spellingShingle |
Fracionamento de bagaço de cana-de-açúcar combinando tratamentos com solvente eutético profundo e ácido diluído Souza, Layanny Samara da Silva Cana-de-açúcar - Etanol Biomassa lignocelulósica Biorrefinaria Xilose Sugar cane - Ethanol Lignocellulosic biomass Biorefinery Xylose CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA |
title_short |
Fracionamento de bagaço de cana-de-açúcar combinando tratamentos com solvente eutético profundo e ácido diluído |
title_full |
Fracionamento de bagaço de cana-de-açúcar combinando tratamentos com solvente eutético profundo e ácido diluído |
title_fullStr |
Fracionamento de bagaço de cana-de-açúcar combinando tratamentos com solvente eutético profundo e ácido diluído |
title_full_unstemmed |
Fracionamento de bagaço de cana-de-açúcar combinando tratamentos com solvente eutético profundo e ácido diluído |
title_sort |
Fracionamento de bagaço de cana-de-açúcar combinando tratamentos com solvente eutético profundo e ácido diluído |
author |
Souza, Layanny Samara da Silva |
author_facet |
Souza, Layanny Samara da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pontes, Liliana de Fátima Bezerra Lira de http://lattes.cnpq.br/0438588394065892 |
dc.contributor.author.fl_str_mv |
Souza, Layanny Samara da Silva |
dc.subject.por.fl_str_mv |
Cana-de-açúcar - Etanol Biomassa lignocelulósica Biorrefinaria Xilose Sugar cane - Ethanol Lignocellulosic biomass Biorefinery Xylose CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA |
topic |
Cana-de-açúcar - Etanol Biomassa lignocelulósica Biorrefinaria Xilose Sugar cane - Ethanol Lignocellulosic biomass Biorefinery Xylose CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA |
description |
The Brazilian sugar and alcohol industry generates more than 640 million tons of sugarcane annually and approximately 180 million tons of sugarcane bagasse. The use of bagasse to produce second-generation ethanol can increase the national production capacity of ethanol. For this purpose, it is necessary to break the recalcitrant structure of the biomass, preferably taking advantage of the generated lignin and hemicellulose fractions, in a biorefinery context. In this work, treatment with a deep eutectic solvent based on choline chlorine and urea was followed by hydrolysis using dilute sulfuric acid for the removal of lignin, conversion of hemicellulose into fermentable xylose and beneficiation of bagasse by increasing its cellulose content. The first treatment extracted 50% of the lignin present and the resulting delignified biomass, chosen from 34% cellulose, 12% lignin and 19% hemicellulose, was used to optimize acid hydrolysis through a Central Composite Experimental Design, optimizing the sulfuric acid concentration and reaction time. The proposed quadratic mathematical model presented R2 = 0.94 and explained 93.8% of the variation in the experimental data, with the quadratic contributions of acid and time, the linear contribution of acid and the linear combination of the two factors being manifested, with 5% of uncertain statistics. The optimum point corresponded to 1.1% sulfuric acid and a time of 59 min 24 s. The hydrolyzed liquor obtained under these conditions presented 18 g L-1 of xylose without the presence of fermentation inhibitors and the final biomass residue had its cellulose content increased to 51%, due to the removal of lignin and hemicellulose, which now represents 16 % and 8% of the composition, respectively. The increase in the proportion of cellulose resulted in an increase in the crystallinity index, which went from 55% in the in natura sample to 58% after lignin removal and 64% after acid hydrolysis. When applying the optimal conditions of hydrolysis to the biomass in natura, concentrations of xylose and cellulose similar to those obtained in the hydrolysis of the biomass treated with the eutectic solvent were found, however the concentration of lignin, the most recalcitrant component, was preserved in 24%, not having been recovered separately. The combined treatment of lignin extraction by eutectic solvent with acid hydrolysis was successful in the separation of the fractions, with removal of about 50% of the lignin from the bagasse, 96% of efficiency of conversion of hemicellulose into xylose and approximately 40% of increase in the content of content cellulose. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-23T12:19:48Z 2023-03-26 2023-08-23T12:19:48Z 2023-02-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/27984 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/27984 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Química Programa de Pós-Graduação em Química UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Química Programa de Pós-Graduação em Química UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801843012460871680 |