Modelo de decisão para predição da disfonia a partir de dados autorreferidos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/20042 |
Resumo: | The self-assessment tools have been recurrent and reliable strategies to detect and evaluate general health conditions in the population, because they represent robust alternatives to measure the impact of a health condition on individual well-being. In the context of vocal disorders, these questionnaires have gained wide recognition in the last decades, however, they still require more modern and rigorous analyzes from the psychometric point of view, to reinforce their validity, robustness and reliability. The detailed evaluation of the relationship between each factor investigated and the presence of dysphonia is important for the interpretation of the results of the instrument and for the elaboration of fast and efficient decision-making methods in the identification of this disorder. Thus, the goal of this research was to elaborate a statistical decision model for predicting dysphonia based on information from the main questionnaires of vocal self-assessment. For that, a documentary research was done from the database of the Integrated Laboratory of Voice Studies (LIEV) of the Universidade Federal da Paraíba. The sample consisted of 139 individuals over 18 years old, of both genders, professionals and non-professionals voice, with and without vocal complaint. Participants were allocated to the group with dysphonia (GCD) or in the vocally healthy group (GVS), according to medical diagnostic and evaluation performed by speech-language pathologists. The items of the Voice-Related Quality of Life (V-RQOL), Voice Handicap Index (VHI) and Voice Symptom Scale (VoiSS) were collected for the adjustment of several logistic regression models, with the aim of investigate the most significant set of items in decision making for prediction of dysphonia. The statistical treatment was performed using Software R, version 3.5.1. In the exploratory analysis, comparative tests between GCD and GVS indicated that total scores and domains of VHI and VoiSS were higher in GCD, with the exception of the emotional domain for both questionnaires. No differences were observed between the groups regarding the V-RQOL. In the regression analysis, model 1, adjusted with the V-RQOL items, was not considered valid by the global adequacy tests. The model 2, composed of 3 items of VHI and model 3, composed of 2 VoiSS items, were considered valid and with high accuracy level (model 2 = 80,2% and model 3 = 81,9%). A global model, adjusted with the most significant variables of the previous models, resulted in a structure containing only the item 14 of the VHI ("I feel as though I have to strain to produce voice") and the item 4 of the VoiSS ("My voice is hoarse? "- adapted), with the highest accuracy in relation to the others (83,4%), representing the most efficient model in the identification of dysphonic individuals. The results of this study allow the conclusion that the use of a decision rule to identify dysphonia, based on only two questions self-referenced by the patient, represents an alternative and efficient resource for population screening, which can be applied and analyzed in future research. |
id |
UFPB_e992f0891cc5726c4efc335f38fd8858 |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/20042 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Modelo de decisão para predição da disfonia a partir de dados autorreferidosAutoavaliaçãoVozDisfoniaQuestionáriosAnálise de regressãoTomada de decisõesSelf-assessmentVoiceDysphoniaQuestionnairesRegression analysisDecision makingCNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVAThe self-assessment tools have been recurrent and reliable strategies to detect and evaluate general health conditions in the population, because they represent robust alternatives to measure the impact of a health condition on individual well-being. In the context of vocal disorders, these questionnaires have gained wide recognition in the last decades, however, they still require more modern and rigorous analyzes from the psychometric point of view, to reinforce their validity, robustness and reliability. The detailed evaluation of the relationship between each factor investigated and the presence of dysphonia is important for the interpretation of the results of the instrument and for the elaboration of fast and efficient decision-making methods in the identification of this disorder. Thus, the goal of this research was to elaborate a statistical decision model for predicting dysphonia based on information from the main questionnaires of vocal self-assessment. For that, a documentary research was done from the database of the Integrated Laboratory of Voice Studies (LIEV) of the Universidade Federal da Paraíba. The sample consisted of 139 individuals over 18 years old, of both genders, professionals and non-professionals voice, with and without vocal complaint. Participants were allocated to the group with dysphonia (GCD) or in the vocally healthy group (GVS), according to medical diagnostic and evaluation performed by speech-language pathologists. The items of the Voice-Related Quality of Life (V-RQOL), Voice Handicap Index (VHI) and Voice Symptom Scale (VoiSS) were collected for the adjustment of several logistic regression models, with the aim of investigate the most significant set of items in decision making for prediction of dysphonia. The statistical treatment was performed using Software R, version 3.5.1. In the exploratory analysis, comparative tests between GCD and GVS indicated that total scores and domains of VHI and VoiSS were higher in GCD, with the exception of the emotional domain for both questionnaires. No differences were observed between the groups regarding the V-RQOL. In the regression analysis, model 1, adjusted with the V-RQOL items, was not considered valid by the global adequacy tests. The model 2, composed of 3 items of VHI and model 3, composed of 2 VoiSS items, were considered valid and with high accuracy level (model 2 = 80,2% and model 3 = 81,9%). A global model, adjusted with the most significant variables of the previous models, resulted in a structure containing only the item 14 of the VHI ("I feel as though I have to strain to produce voice") and the item 4 of the VoiSS ("My voice is hoarse? "- adapted), with the highest accuracy in relation to the others (83,4%), representing the most efficient model in the identification of dysphonic individuals. The results of this study allow the conclusion that the use of a decision rule to identify dysphonia, based on only two questions self-referenced by the patient, represents an alternative and efficient resource for population screening, which can be applied and analyzed in future research.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqOs instrumentos de autoavaliação têm sido estratégias recorrentes e confiáveis para detectar e avaliar condições de saúde geral na população, pois representam alternativas robustas para mensurar o impacto de uma condição de saúde sobre o bem-estar individual. No âmbito dos distúrbios vocais, esses questionários ganharam amplo reconhecimento nas últimas décadas, contudo, ainda requerem análises mais modernas e rigorosas do ponto de vista psicométrico, a fim de reforçar sua validade, robustez e confiabilidade. A avaliação detalhada da relação entre cada aspecto investigado e a presença da disfonia é importante para a interpretação dos resultados do instrumento e para a elaboração de métodos de tomada de decisão rápidos e eficientes na identificação desse distúrbio. Assim, o objetivo dessa pesquisa foi elaborar um modelo de decisão estatístico para predição da disfonia a partir de informações dos principais questionários de autoavaliação vocal. Para isso, foi realizada uma pesquisa documental a partir do banco de dados do Laboratório Integrado de Estudos da Voz (LIEV) da Universidade Federal da Paraíba. A amostra foi composta por 139 indivíduos acima de 18 anos, de ambos os sexos, profissionais e não profissionais da voz, com e sem queixa vocal. Os participantes foram alocados no grupo com disfonia (GCD) ou no grupo vocalmente saudável (GVS), de acordo com o diagnóstico laríngeo e fonoaudiológico apresentado. Os itens do Questionário de Qualidade de Vida em Voz (QVV), Índice de Desvantagem Vocal (IDV) e Escala de Sintomas Vocais (ESV) foram coletados para o ajuste de diversos modelos de regressão logística, visando investigar o conjunto de itens mais significante na tomada de decisão para previsão da disfonia. O tratamento estatístico foi realizado por meio do Software R, versão 3.5.1. Na análise exploratória, testes de comparação entre o GCD e o GVS indicaram que os escores totais e por domínios do IDV e da ESV apresentam-se maiores no GCD, com exceção do domínio emocional para ambos os questionários. Não foram observadas diferenças entre os grupos quanto aos escores do QVV. Na análise de regressão, o modelo 1, ajustado com os itens do QVV, não foi considerado válido pelos testes de adequação global. Já o modelo 2, composto por 3 itens do IDV e o modelo 3, composto por 2 itens da ESV, foram considerados válidos e com elevados índices de acurácia (modelo 2 = 80,2% e modelo 3 = 81,9%). Um modelo global, ajustado com as variáveis mais significantes dos modelos anteriores, resultou em uma estrutura contendo apenas o item 14 do IDV (“Sinto que tenho que fazer força para a minha voz sair”) e o item 4 da ESV (“Minha voz é rouca?” – adaptado), com o maior índice de acurácia em relação aos demais (83,4%), representando o modelo mais eficiente na identificação de indivíduos disfônicos. Os resultados desse estudo permitem a conclusão que o uso de uma regra de decisão para identificação da disfonia, baseada em apenas dois questionamentos respondidos pelo próprio paciente, representa um recurso alternativo e eficiente para triagens populacionais, que poderá ser aplicado e analisado em pesquisa futuras.Universidade Federal da ParaíbaBrasilCiências Exatas e da SaúdePrograma de Pós-Graduação em Modelos de Decisão e SaúdeUFPBLima Neto, Eufrásio de Andradehttp://lattes.cnpq.br/5580004940091667Almeida, Anna Alice Figueirêdo dehttp://lattes.cnpq.br/8539341671152883Silva, Priscila Oliveira Costa2021-05-13T19:59:06Z2020-03-012021-05-13T19:59:06Z2019-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://repositorio.ufpb.br/jspui/handle/123456789/20042porhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2021-06-11T19:57:05Zoai:repositorio.ufpb.br:123456789/20042Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2021-06-11T19:57:05Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Modelo de decisão para predição da disfonia a partir de dados autorreferidos |
title |
Modelo de decisão para predição da disfonia a partir de dados autorreferidos |
spellingShingle |
Modelo de decisão para predição da disfonia a partir de dados autorreferidos Silva, Priscila Oliveira Costa Autoavaliação Voz Disfonia Questionários Análise de regressão Tomada de decisões Self-assessment Voice Dysphonia Questionnaires Regression analysis Decision making CNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVA |
title_short |
Modelo de decisão para predição da disfonia a partir de dados autorreferidos |
title_full |
Modelo de decisão para predição da disfonia a partir de dados autorreferidos |
title_fullStr |
Modelo de decisão para predição da disfonia a partir de dados autorreferidos |
title_full_unstemmed |
Modelo de decisão para predição da disfonia a partir de dados autorreferidos |
title_sort |
Modelo de decisão para predição da disfonia a partir de dados autorreferidos |
author |
Silva, Priscila Oliveira Costa |
author_facet |
Silva, Priscila Oliveira Costa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lima Neto, Eufrásio de Andrade http://lattes.cnpq.br/5580004940091667 Almeida, Anna Alice Figueirêdo de http://lattes.cnpq.br/8539341671152883 |
dc.contributor.author.fl_str_mv |
Silva, Priscila Oliveira Costa |
dc.subject.por.fl_str_mv |
Autoavaliação Voz Disfonia Questionários Análise de regressão Tomada de decisões Self-assessment Voice Dysphonia Questionnaires Regression analysis Decision making CNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVA |
topic |
Autoavaliação Voz Disfonia Questionários Análise de regressão Tomada de decisões Self-assessment Voice Dysphonia Questionnaires Regression analysis Decision making CNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVA |
description |
The self-assessment tools have been recurrent and reliable strategies to detect and evaluate general health conditions in the population, because they represent robust alternatives to measure the impact of a health condition on individual well-being. In the context of vocal disorders, these questionnaires have gained wide recognition in the last decades, however, they still require more modern and rigorous analyzes from the psychometric point of view, to reinforce their validity, robustness and reliability. The detailed evaluation of the relationship between each factor investigated and the presence of dysphonia is important for the interpretation of the results of the instrument and for the elaboration of fast and efficient decision-making methods in the identification of this disorder. Thus, the goal of this research was to elaborate a statistical decision model for predicting dysphonia based on information from the main questionnaires of vocal self-assessment. For that, a documentary research was done from the database of the Integrated Laboratory of Voice Studies (LIEV) of the Universidade Federal da Paraíba. The sample consisted of 139 individuals over 18 years old, of both genders, professionals and non-professionals voice, with and without vocal complaint. Participants were allocated to the group with dysphonia (GCD) or in the vocally healthy group (GVS), according to medical diagnostic and evaluation performed by speech-language pathologists. The items of the Voice-Related Quality of Life (V-RQOL), Voice Handicap Index (VHI) and Voice Symptom Scale (VoiSS) were collected for the adjustment of several logistic regression models, with the aim of investigate the most significant set of items in decision making for prediction of dysphonia. The statistical treatment was performed using Software R, version 3.5.1. In the exploratory analysis, comparative tests between GCD and GVS indicated that total scores and domains of VHI and VoiSS were higher in GCD, with the exception of the emotional domain for both questionnaires. No differences were observed between the groups regarding the V-RQOL. In the regression analysis, model 1, adjusted with the V-RQOL items, was not considered valid by the global adequacy tests. The model 2, composed of 3 items of VHI and model 3, composed of 2 VoiSS items, were considered valid and with high accuracy level (model 2 = 80,2% and model 3 = 81,9%). A global model, adjusted with the most significant variables of the previous models, resulted in a structure containing only the item 14 of the VHI ("I feel as though I have to strain to produce voice") and the item 4 of the VoiSS ("My voice is hoarse? "- adapted), with the highest accuracy in relation to the others (83,4%), representing the most efficient model in the identification of dysphonic individuals. The results of this study allow the conclusion that the use of a decision rule to identify dysphonia, based on only two questions self-referenced by the patient, represents an alternative and efficient resource for population screening, which can be applied and analyzed in future research. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-01 2020-03-01 2021-05-13T19:59:06Z 2021-05-13T19:59:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/20042 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/20042 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Ciências Exatas e da Saúde Programa de Pós-Graduação em Modelos de Decisão e Saúde UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Ciências Exatas e da Saúde Programa de Pós-Graduação em Modelos de Decisão e Saúde UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801842973642588160 |