Análise de performance de algoritmos de reconstrução para um conversor analógico para informação
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/28171 |
Resumo: | The conventionalapproachtosamplinganalogsignalstodigitalfollowstheNyquistThe- orem,inwhichthesamplingrate,calledNyquistrate,mustbeatleasttwotimesbigger than themaximumfrequencyoftheanalogsignal.Inpracticalterms,generally,analogto digital converters’(ADC)samplingratesaremuchhighertooptimizesignalreconstruc- tion, however,theyincreasetheneedformemoryandprocessingpower,systemscosts, and alsoincreaseenergyconsumption.CompressiveSensing(CS)isatechniquethattakes advantage ofsignalsparsityinagivendomain,thatis,thenumberofnon-zerovaluesof a signal,andcapturesonlytheregionsthatconcentrateinformation,withsamplingrates lowerthanwhattheNyquistTheoremsays.AdevicethatimplementstheCSmodelis the Analog-to-InformationConverter(AIC),whichobtainsanoutputthatisadigitized and compressedversionoftheinput.Themainobjectiveistoanalyzetheperformanceof reconstruction algorithms-BasisPursuit(BP),OrthogonalMathingPursuit(OMP)and CompressiveSamplingMatchingPursuit(CoSaMP)-foranadaptedAICconfiguration based onRandomModulatorPre-Integration(RMPI).SimulationsweredoneonProteus and SimulinktovalidatetheAICconfigurationused,andsingle-toneandduo-tonessig- nals werereconstructedwithfrequencycomponentssimlartotheoriginalsignals.Mean squarederror(MSE)wascalculatedforthethreereconstructionmethodstodetermine which onehadbetterperformance. |
id |
UFPB_facf031e181758b96b8b08da57d3994d |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/28171 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Análise de performance de algoritmos de reconstrução para um conversor analógico para informaçãoEngenharia elétricaAmostragem compressivaConversor analógico para informaçãoSinais esparsosAlgoritmos de reconstruçãoElectrical engineeringCompressed SensingAnalog-to-information ConverterSparse signalsRe-construction algorithmsCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAThe conventionalapproachtosamplinganalogsignalstodigitalfollowstheNyquistThe- orem,inwhichthesamplingrate,calledNyquistrate,mustbeatleasttwotimesbigger than themaximumfrequencyoftheanalogsignal.Inpracticalterms,generally,analogto digital converters’(ADC)samplingratesaremuchhighertooptimizesignalreconstruc- tion, however,theyincreasetheneedformemoryandprocessingpower,systemscosts, and alsoincreaseenergyconsumption.CompressiveSensing(CS)isatechniquethattakes advantage ofsignalsparsityinagivendomain,thatis,thenumberofnon-zerovaluesof a signal,andcapturesonlytheregionsthatconcentrateinformation,withsamplingrates lowerthanwhattheNyquistTheoremsays.AdevicethatimplementstheCSmodelis the Analog-to-InformationConverter(AIC),whichobtainsanoutputthatisadigitized and compressedversionoftheinput.Themainobjectiveistoanalyzetheperformanceof reconstruction algorithms-BasisPursuit(BP),OrthogonalMathingPursuit(OMP)and CompressiveSamplingMatchingPursuit(CoSaMP)-foranadaptedAICconfiguration based onRandomModulatorPre-Integration(RMPI).SimulationsweredoneonProteus and SimulinktovalidatetheAICconfigurationused,andsingle-toneandduo-tonessig- nals werereconstructedwithfrequencycomponentssimlartotheoriginalsignals.Mean squarederror(MSE)wascalculatedforthethreereconstructionmethodstodetermine which onehadbetterperformance.NenhumaA abordagem convencional para amostragem de sinais analógicos para digital segue o Teorema de Nyquist, em que a taxa de amostragem, chamada de Taxa de Nyquist, deve ser pelo menos duas vezes o valor da frequência máxima dos inalanalógico. Em termos práticos, no geral, as taxas de amostragem de conversores analógicos digitais (ADC) são bem superiores à taxa de Nyquist afim de otimizar a recuperação do sinal, porém aumenta-se também a necessidade de memória e de poder de processamento, os custos dos sistemas como um todo e um maior consumo de energia. A Amostragem Compressiva (AC) é uma técnica que explora a esparsidade de um sinal em um determinado domínio, i.e., a informação do sinal se concentra em poucos coeficientes, e a maior parte de seus coeficientes é igual ou próxima de zero. O Conversor Analógico para Informação (AIC) é o dispositivo que implementa o conceito de amostragem compressiva, em que, ao passo que realiza a amostragem do sinal analógico de entrada, um processo de compressão é realizado e, assim, obtém-se como saída uma versão digitalizada e comprimida do sinal de entrada que será transmitido e reconstruído no receptor. Diante do exposto, este trabalho tem como objetivo a análise de performance dos algoritmos de reconstrução Busca de Base (BP), Busca por Correspondência Ortogonal (OMP) e Amostragem Compressiva com Busca por Correspondência (CoSaMP) para uma configuração adaptada de AIC baseada no Pré-Integrador de Modulação Aleatória(RMPI). Simulações foram feitas no Proteus e no Simulink para validação da configuração do AIC, e sinais de um tom e de dois tons foram reconstruídos com componentes de frequência aproximados dos sinais originais. O desempenho dos três métodos de reconstrução foi avaliado com a métrica do erro quadrático médio (MSE).Universidade Federal da ParaíbaBrasilEngenharia ElétricaPrograma de Pós-Graduação em Engenharia ElétricaUFPBSouza, Cleonilson Protásio dehttp://lattes.cnpq.br/5635983022553950Araujo, Hugo Bruno Santos2023-08-31T11:42:39Z2023-01-122023-08-31T11:42:39Z2022-09-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/28171porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2023-09-01T06:04:37Zoai:repositorio.ufpb.br:123456789/28171Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2023-09-01T06:04:37Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Análise de performance de algoritmos de reconstrução para um conversor analógico para informação |
title |
Análise de performance de algoritmos de reconstrução para um conversor analógico para informação |
spellingShingle |
Análise de performance de algoritmos de reconstrução para um conversor analógico para informação Araujo, Hugo Bruno Santos Engenharia elétrica Amostragem compressiva Conversor analógico para informação Sinais esparsos Algoritmos de reconstrução Electrical engineering Compressed Sensing Analog-to-information Converter Sparse signals Re-construction algorithms CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Análise de performance de algoritmos de reconstrução para um conversor analógico para informação |
title_full |
Análise de performance de algoritmos de reconstrução para um conversor analógico para informação |
title_fullStr |
Análise de performance de algoritmos de reconstrução para um conversor analógico para informação |
title_full_unstemmed |
Análise de performance de algoritmos de reconstrução para um conversor analógico para informação |
title_sort |
Análise de performance de algoritmos de reconstrução para um conversor analógico para informação |
author |
Araujo, Hugo Bruno Santos |
author_facet |
Araujo, Hugo Bruno Santos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Souza, Cleonilson Protásio de http://lattes.cnpq.br/5635983022553950 |
dc.contributor.author.fl_str_mv |
Araujo, Hugo Bruno Santos |
dc.subject.por.fl_str_mv |
Engenharia elétrica Amostragem compressiva Conversor analógico para informação Sinais esparsos Algoritmos de reconstrução Electrical engineering Compressed Sensing Analog-to-information Converter Sparse signals Re-construction algorithms CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
Engenharia elétrica Amostragem compressiva Conversor analógico para informação Sinais esparsos Algoritmos de reconstrução Electrical engineering Compressed Sensing Analog-to-information Converter Sparse signals Re-construction algorithms CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
description |
The conventionalapproachtosamplinganalogsignalstodigitalfollowstheNyquistThe- orem,inwhichthesamplingrate,calledNyquistrate,mustbeatleasttwotimesbigger than themaximumfrequencyoftheanalogsignal.Inpracticalterms,generally,analogto digital converters’(ADC)samplingratesaremuchhighertooptimizesignalreconstruc- tion, however,theyincreasetheneedformemoryandprocessingpower,systemscosts, and alsoincreaseenergyconsumption.CompressiveSensing(CS)isatechniquethattakes advantage ofsignalsparsityinagivendomain,thatis,thenumberofnon-zerovaluesof a signal,andcapturesonlytheregionsthatconcentrateinformation,withsamplingrates lowerthanwhattheNyquistTheoremsays.AdevicethatimplementstheCSmodelis the Analog-to-InformationConverter(AIC),whichobtainsanoutputthatisadigitized and compressedversionoftheinput.Themainobjectiveistoanalyzetheperformanceof reconstruction algorithms-BasisPursuit(BP),OrthogonalMathingPursuit(OMP)and CompressiveSamplingMatchingPursuit(CoSaMP)-foranadaptedAICconfiguration based onRandomModulatorPre-Integration(RMPI).SimulationsweredoneonProteus and SimulinktovalidatetheAICconfigurationused,andsingle-toneandduo-tonessig- nals werereconstructedwithfrequencycomponentssimlartotheoriginalsignals.Mean squarederror(MSE)wascalculatedforthethreereconstructionmethodstodetermine which onehadbetterperformance. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-29 2023-08-31T11:42:39Z 2023-01-12 2023-08-31T11:42:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/28171 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/28171 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801843013510496256 |