Análise de performance de algoritmos de reconstrução para um conversor analógico para informação

Detalhes bibliográficos
Autor(a) principal: Araujo, Hugo Bruno Santos
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/123456789/28171
Resumo: The conventionalapproachtosamplinganalogsignalstodigitalfollowstheNyquistThe- orem,inwhichthesamplingrate,calledNyquistrate,mustbeatleasttwotimesbigger than themaximumfrequencyoftheanalogsignal.Inpracticalterms,generally,analogto digital converters’(ADC)samplingratesaremuchhighertooptimizesignalreconstruc- tion, however,theyincreasetheneedformemoryandprocessingpower,systemscosts, and alsoincreaseenergyconsumption.CompressiveSensing(CS)isatechniquethattakes advantage ofsignalsparsityinagivendomain,thatis,thenumberofnon-zerovaluesof a signal,andcapturesonlytheregionsthatconcentrateinformation,withsamplingrates lowerthanwhattheNyquistTheoremsays.AdevicethatimplementstheCSmodelis the Analog-to-InformationConverter(AIC),whichobtainsanoutputthatisadigitized and compressedversionoftheinput.Themainobjectiveistoanalyzetheperformanceof reconstruction algorithms-BasisPursuit(BP),OrthogonalMathingPursuit(OMP)and CompressiveSamplingMatchingPursuit(CoSaMP)-foranadaptedAICconfiguration based onRandomModulatorPre-Integration(RMPI).SimulationsweredoneonProteus and SimulinktovalidatetheAICconfigurationused,andsingle-toneandduo-tonessig- nals werereconstructedwithfrequencycomponentssimlartotheoriginalsignals.Mean squarederror(MSE)wascalculatedforthethreereconstructionmethodstodetermine which onehadbetterperformance.
id UFPB_facf031e181758b96b8b08da57d3994d
oai_identifier_str oai:repositorio.ufpb.br:123456789/28171
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Análise de performance de algoritmos de reconstrução para um conversor analógico para informaçãoEngenharia elétricaAmostragem compressivaConversor analógico para informaçãoSinais esparsosAlgoritmos de reconstruçãoElectrical engineeringCompressed SensingAnalog-to-information ConverterSparse signalsRe-construction algorithmsCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAThe conventionalapproachtosamplinganalogsignalstodigitalfollowstheNyquistThe- orem,inwhichthesamplingrate,calledNyquistrate,mustbeatleasttwotimesbigger than themaximumfrequencyoftheanalogsignal.Inpracticalterms,generally,analogto digital converters’(ADC)samplingratesaremuchhighertooptimizesignalreconstruc- tion, however,theyincreasetheneedformemoryandprocessingpower,systemscosts, and alsoincreaseenergyconsumption.CompressiveSensing(CS)isatechniquethattakes advantage ofsignalsparsityinagivendomain,thatis,thenumberofnon-zerovaluesof a signal,andcapturesonlytheregionsthatconcentrateinformation,withsamplingrates lowerthanwhattheNyquistTheoremsays.AdevicethatimplementstheCSmodelis the Analog-to-InformationConverter(AIC),whichobtainsanoutputthatisadigitized and compressedversionoftheinput.Themainobjectiveistoanalyzetheperformanceof reconstruction algorithms-BasisPursuit(BP),OrthogonalMathingPursuit(OMP)and CompressiveSamplingMatchingPursuit(CoSaMP)-foranadaptedAICconfiguration based onRandomModulatorPre-Integration(RMPI).SimulationsweredoneonProteus and SimulinktovalidatetheAICconfigurationused,andsingle-toneandduo-tonessig- nals werereconstructedwithfrequencycomponentssimlartotheoriginalsignals.Mean squarederror(MSE)wascalculatedforthethreereconstructionmethodstodetermine which onehadbetterperformance.NenhumaA abordagem convencional para amostragem de sinais analógicos para digital segue o Teorema de Nyquist, em que a taxa de amostragem, chamada de Taxa de Nyquist, deve ser pelo menos duas vezes o valor da frequência máxima dos inalanalógico. Em termos práticos, no geral, as taxas de amostragem de conversores analógicos digitais (ADC) são bem superiores à taxa de Nyquist afim de otimizar a recuperação do sinal, porém aumenta-se também a necessidade de memória e de poder de processamento, os custos dos sistemas como um todo e um maior consumo de energia. A Amostragem Compressiva (AC) é uma técnica que explora a esparsidade de um sinal em um determinado domínio, i.e., a informação do sinal se concentra em poucos coeficientes, e a maior parte de seus coeficientes é igual ou próxima de zero. O Conversor Analógico para Informação (AIC) é o dispositivo que implementa o conceito de amostragem compressiva, em que, ao passo que realiza a amostragem do sinal analógico de entrada, um processo de compressão é realizado e, assim, obtém-se como saída uma versão digitalizada e comprimida do sinal de entrada que será transmitido e reconstruído no receptor. Diante do exposto, este trabalho tem como objetivo a análise de performance dos algoritmos de reconstrução Busca de Base (BP), Busca por Correspondência Ortogonal (OMP) e Amostragem Compressiva com Busca por Correspondência (CoSaMP) para uma configuração adaptada de AIC baseada no Pré-Integrador de Modulação Aleatória(RMPI). Simulações foram feitas no Proteus e no Simulink para validação da configuração do AIC, e sinais de um tom e de dois tons foram reconstruídos com componentes de frequência aproximados dos sinais originais. O desempenho dos três métodos de reconstrução foi avaliado com a métrica do erro quadrático médio (MSE).Universidade Federal da ParaíbaBrasilEngenharia ElétricaPrograma de Pós-Graduação em Engenharia ElétricaUFPBSouza, Cleonilson Protásio dehttp://lattes.cnpq.br/5635983022553950Araujo, Hugo Bruno Santos2023-08-31T11:42:39Z2023-01-122023-08-31T11:42:39Z2022-09-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/28171porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2023-09-01T06:04:37Zoai:repositorio.ufpb.br:123456789/28171Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2023-09-01T06:04:37Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Análise de performance de algoritmos de reconstrução para um conversor analógico para informação
title Análise de performance de algoritmos de reconstrução para um conversor analógico para informação
spellingShingle Análise de performance de algoritmos de reconstrução para um conversor analógico para informação
Araujo, Hugo Bruno Santos
Engenharia elétrica
Amostragem compressiva
Conversor analógico para informação
Sinais esparsos
Algoritmos de reconstrução
Electrical engineering
Compressed Sensing
Analog-to-information Converter
Sparse signals
Re-construction algorithms
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Análise de performance de algoritmos de reconstrução para um conversor analógico para informação
title_full Análise de performance de algoritmos de reconstrução para um conversor analógico para informação
title_fullStr Análise de performance de algoritmos de reconstrução para um conversor analógico para informação
title_full_unstemmed Análise de performance de algoritmos de reconstrução para um conversor analógico para informação
title_sort Análise de performance de algoritmos de reconstrução para um conversor analógico para informação
author Araujo, Hugo Bruno Santos
author_facet Araujo, Hugo Bruno Santos
author_role author
dc.contributor.none.fl_str_mv Souza, Cleonilson Protásio de
http://lattes.cnpq.br/5635983022553950
dc.contributor.author.fl_str_mv Araujo, Hugo Bruno Santos
dc.subject.por.fl_str_mv Engenharia elétrica
Amostragem compressiva
Conversor analógico para informação
Sinais esparsos
Algoritmos de reconstrução
Electrical engineering
Compressed Sensing
Analog-to-information Converter
Sparse signals
Re-construction algorithms
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Engenharia elétrica
Amostragem compressiva
Conversor analógico para informação
Sinais esparsos
Algoritmos de reconstrução
Electrical engineering
Compressed Sensing
Analog-to-information Converter
Sparse signals
Re-construction algorithms
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description The conventionalapproachtosamplinganalogsignalstodigitalfollowstheNyquistThe- orem,inwhichthesamplingrate,calledNyquistrate,mustbeatleasttwotimesbigger than themaximumfrequencyoftheanalogsignal.Inpracticalterms,generally,analogto digital converters’(ADC)samplingratesaremuchhighertooptimizesignalreconstruc- tion, however,theyincreasetheneedformemoryandprocessingpower,systemscosts, and alsoincreaseenergyconsumption.CompressiveSensing(CS)isatechniquethattakes advantage ofsignalsparsityinagivendomain,thatis,thenumberofnon-zerovaluesof a signal,andcapturesonlytheregionsthatconcentrateinformation,withsamplingrates lowerthanwhattheNyquistTheoremsays.AdevicethatimplementstheCSmodelis the Analog-to-InformationConverter(AIC),whichobtainsanoutputthatisadigitized and compressedversionoftheinput.Themainobjectiveistoanalyzetheperformanceof reconstruction algorithms-BasisPursuit(BP),OrthogonalMathingPursuit(OMP)and CompressiveSamplingMatchingPursuit(CoSaMP)-foranadaptedAICconfiguration based onRandomModulatorPre-Integration(RMPI).SimulationsweredoneonProteus and SimulinktovalidatetheAICconfigurationused,andsingle-toneandduo-tonessig- nals werereconstructedwithfrequencycomponentssimlartotheoriginalsignals.Mean squarederror(MSE)wascalculatedforthethreereconstructionmethodstodetermine which onehadbetterperformance.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-29
2023-08-31T11:42:39Z
2023-01-12
2023-08-31T11:42:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/28171
url https://repositorio.ufpb.br/jspui/handle/123456789/28171
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Engenharia Elétrica
Programa de Pós-Graduação em Engenharia Elétrica
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Engenharia Elétrica
Programa de Pós-Graduação em Engenharia Elétrica
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| diretoria@ufpb.br
_version_ 1801843013510496256