Generalized probability distributions for lifetime applications

Detalhes bibliográficos
Autor(a) principal: TABLADA, Claudio Javier
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000003qqw
Texto Completo: https://repositorio.ufpe.br/handle/123456789/23660
Resumo: A arte da indução paramétrica a uma distribuição-base é um dos métodos mais usados para obter modelos mais versáteis. A principal razão para esta tendência é o fato de que, muitas vezes, modelos clássicos podem não ser suficientemente flexíveis para ajustar certos dados de tempos de vida. Assim, distribuições generalizadas ou estendidas são de grande importância, principalmente por duas razões: para ter maior controle nas caudas e para melhorar a bondade de ajuste da distribuição-base. Nesta tese, propomos duas novas famílias de distribuições, denominadas de famílias do supremo e do ínfimo, as quais acrescentam um parâmetro de forma a uma distribuição-base. Obtemos algumas propriedades e quantidades matemáticas dessas famílias. Além disso, apresentamos cinco modelos particulares pertencentes à família do supremo e outros cinco modelos pertencentes à família do ínfimo. Uma outra contribuição é um modelo de três parâmetros, denominado de distribuição Fréchet modificada, a qual é obtida acrescentando um parâmetro de forma no modelo Fréchet. Usando a função W de Lambert, obtemos várias quantidades e propriedades matemáticas deste modelo. Finalmente, propomos um modelo generalizado de quatro parâmetros, denominado de distribuição beta Marshall-OlkinLomax, obtido considerando a distribuição Lomax como modelo base no gerador beta Marshall-Olkin. Determinamos várias expansões úteis e propriedades matemáticas para este modelo. Em todos os casos, provamos empiricamente a aplicabilidade dos novos modelos a dados reais.
id UFPE_01c5b4de538f9485df20689f79ffcbe0
oai_identifier_str oai:repositorio.ufpe.br:123456789/23660
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling TABLADA, Claudio Javierhttp://lattes.cnpq.br/4108250414004838http://lattes.cnpq.br/3268732497595112CORDEIRO, Gauss Moutinho2018-02-16T19:58:08Z2018-02-16T19:58:08Z2017-01-23https://repositorio.ufpe.br/handle/123456789/23660ark:/64986/0013000003qqwA arte da indução paramétrica a uma distribuição-base é um dos métodos mais usados para obter modelos mais versáteis. A principal razão para esta tendência é o fato de que, muitas vezes, modelos clássicos podem não ser suficientemente flexíveis para ajustar certos dados de tempos de vida. Assim, distribuições generalizadas ou estendidas são de grande importância, principalmente por duas razões: para ter maior controle nas caudas e para melhorar a bondade de ajuste da distribuição-base. Nesta tese, propomos duas novas famílias de distribuições, denominadas de famílias do supremo e do ínfimo, as quais acrescentam um parâmetro de forma a uma distribuição-base. Obtemos algumas propriedades e quantidades matemáticas dessas famílias. Além disso, apresentamos cinco modelos particulares pertencentes à família do supremo e outros cinco modelos pertencentes à família do ínfimo. Uma outra contribuição é um modelo de três parâmetros, denominado de distribuição Fréchet modificada, a qual é obtida acrescentando um parâmetro de forma no modelo Fréchet. Usando a função W de Lambert, obtemos várias quantidades e propriedades matemáticas deste modelo. Finalmente, propomos um modelo generalizado de quatro parâmetros, denominado de distribuição beta Marshall-OlkinLomax, obtido considerando a distribuição Lomax como modelo base no gerador beta Marshall-Olkin. Determinamos várias expansões úteis e propriedades matemáticas para este modelo. Em todos os casos, provamos empiricamente a aplicabilidade dos novos modelos a dados reais.CAPESThe art of parameter induction to a parent distribution is one of the methods more used for obtain more versatile models. The main reason for this trend is the fact that, many times, classic models often may not be flexible enough to adjust certain lifetime data. So, generalized or extended distributions are of great importance, mainly for two reasons: for controlling the tails and improve the goodness-of-fit of the parent distribution. In this thesis, we propose two new families of distributions, namely thesupremum and infimum families, which induce a shape parameter to a parent distribution. We obtain some properties and mathematical quantities of these families. In addition, we present five particular models belonging to the supremum family and others five models belonging to the infimum family. Other contribution is a three-parameter model called the modified Fréchet distribution, which is obtained by inducing a shape parameter in the Fréchet model. Using the Lambert W function, we obtain several mathematical quantities and properties of this model. Finally, we propose a four-parameter generalized model called the beta Marshall-Olkin Lomax distribution, which is obtained to considering the Lomax distribution as the parent model in the beta Marshall-Olkingerator. We obtain several useful expansions and mathematical properties for this model. In all cases, we prove empirically the applicability of the new models to real data.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessProbabilidadeTeoria das distribuiçõesGeneralized probability distributions for lifetime applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTese_cd.pdf.jpgTese_cd.pdf.jpgGenerated Thumbnailimage/jpeg1316https://repositorio.ufpe.br/bitstream/123456789/23660/5/Tese_cd.pdf.jpg99811abd28a007e58e2db26303a0b911MD55ORIGINALTese_cd.pdfTese_cd.pdfapplication/pdf1772542https://repositorio.ufpe.br/bitstream/123456789/23660/1/Tese_cd.pdf9852fe90d8b009ad3e0db02dbf491d37MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/23660/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/23660/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTese_cd.pdf.txtTese_cd.pdf.txtExtracted texttext/plain201422https://repositorio.ufpe.br/bitstream/123456789/23660/4/Tese_cd.pdf.txtb56f60381d2fe038f19c26bdf7228a96MD54123456789/236602019-10-25 07:49:41.629oai:repositorio.ufpe.br:123456789/23660TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T10:49:41Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Generalized probability distributions for lifetime applications
title Generalized probability distributions for lifetime applications
spellingShingle Generalized probability distributions for lifetime applications
TABLADA, Claudio Javier
Probabilidade
Teoria das distribuições
title_short Generalized probability distributions for lifetime applications
title_full Generalized probability distributions for lifetime applications
title_fullStr Generalized probability distributions for lifetime applications
title_full_unstemmed Generalized probability distributions for lifetime applications
title_sort Generalized probability distributions for lifetime applications
author TABLADA, Claudio Javier
author_facet TABLADA, Claudio Javier
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4108250414004838
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3268732497595112
dc.contributor.author.fl_str_mv TABLADA, Claudio Javier
dc.contributor.advisor1.fl_str_mv CORDEIRO, Gauss Moutinho
contributor_str_mv CORDEIRO, Gauss Moutinho
dc.subject.por.fl_str_mv Probabilidade
Teoria das distribuições
topic Probabilidade
Teoria das distribuições
description A arte da indução paramétrica a uma distribuição-base é um dos métodos mais usados para obter modelos mais versáteis. A principal razão para esta tendência é o fato de que, muitas vezes, modelos clássicos podem não ser suficientemente flexíveis para ajustar certos dados de tempos de vida. Assim, distribuições generalizadas ou estendidas são de grande importância, principalmente por duas razões: para ter maior controle nas caudas e para melhorar a bondade de ajuste da distribuição-base. Nesta tese, propomos duas novas famílias de distribuições, denominadas de famílias do supremo e do ínfimo, as quais acrescentam um parâmetro de forma a uma distribuição-base. Obtemos algumas propriedades e quantidades matemáticas dessas famílias. Além disso, apresentamos cinco modelos particulares pertencentes à família do supremo e outros cinco modelos pertencentes à família do ínfimo. Uma outra contribuição é um modelo de três parâmetros, denominado de distribuição Fréchet modificada, a qual é obtida acrescentando um parâmetro de forma no modelo Fréchet. Usando a função W de Lambert, obtemos várias quantidades e propriedades matemáticas deste modelo. Finalmente, propomos um modelo generalizado de quatro parâmetros, denominado de distribuição beta Marshall-OlkinLomax, obtido considerando a distribuição Lomax como modelo base no gerador beta Marshall-Olkin. Determinamos várias expansões úteis e propriedades matemáticas para este modelo. Em todos os casos, provamos empiricamente a aplicabilidade dos novos modelos a dados reais.
publishDate 2017
dc.date.issued.fl_str_mv 2017-01-23
dc.date.accessioned.fl_str_mv 2018-02-16T19:58:08Z
dc.date.available.fl_str_mv 2018-02-16T19:58:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/23660
dc.identifier.dark.fl_str_mv ark:/64986/0013000003qqw
url https://repositorio.ufpe.br/handle/123456789/23660
identifier_str_mv ark:/64986/0013000003qqw
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Estatistica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/23660/5/Tese_cd.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/23660/1/Tese_cd.pdf
https://repositorio.ufpe.br/bitstream/123456789/23660/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/23660/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/23660/4/Tese_cd.pdf.txt
bitstream.checksum.fl_str_mv 99811abd28a007e58e2db26303a0b911
9852fe90d8b009ad3e0db02dbf491d37
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
b56f60381d2fe038f19c26bdf7228a96
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172712566358016