Análise paramétrica da transformação termoquímica de biomassa via processo de gaseificação: uma abordagem numérica

Detalhes bibliográficos
Autor(a) principal: SILVA, Jarmison de Araújo
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
Texto Completo: https://repositorio.ufpe.br/handle/123456789/17934
Resumo: No cenário atual brasileiro a energia de biomassa aparece como uma oportunidade de singular importância por colaborar com um montante de aproximadamente 25% da oferta total de energia do país. Além da biomassa tradicional, contabilizada no balanço energético nacional, existe um grande potencial nos resíduos agrícolas, industriais e urbanos para fins energéticos. No uso da biomassa para fins energéticos, em particular a produção de eletricidade, podem ser utilizadas tecnologias que envolvem combustão direta da biomassa (ciclos a vapor, por exemplo) ou tecnologias que requerem a necessidade de conversão da biomassa em combustíveis líquidos ou gasosos antes da sua combustão. Exemplos do último caso são as tecnologias que fazem uso de gaseificação, biodigestão e pirólise. A grande vantagem na conversão de biomassa em combustíveis líquidos e gasosos é o aumento da flexibilidade de uso destes combustíveis em motores de combustão interna e turbinas a gás. Os processos termoquímicos da pirólise e a gaseificação podem ser definidos como a degradação térmica de qualquer material orgânico sólido na ausência total ou parcial de um agente oxidante, ou em uma quantidade tal que a oxidação não seja completa, dando origem a compostos químicos que tem potencial energético para serem utilizados como combustíveis se assim for requerido. O presente trabalho representa um estudo numérico do processo de gaseificação considerando uma modelagem que envolve equilíbrio químico e as equações de reações principais que atuam na transformação termoquímica via gaseificação. O modelo foi validado com resultados experimentais e aplicado a um estudo paramétrico envolvendo fontes de biomassa da região nordeste do Brasil, diferentes condições de temperatura de reação, dois diferentes agentes de gaseificação e variação da fração do agente de gaseificação em relação à biomassa. Os resultados mostram, entre outras conclusões, que o aumento da temperatura do reator aumenta a fração de H2 e CO em detrimento da formação de CH4. Este comportamento ocorre para os dois agentes de gaseificação utilizados (vapor e ar), embora com algumas diferenças nos valores das frações dos gases produzidos. Por sua vez, o aumento na fração do vapor como agente de gaseificação causa um aumento na produção de H2 e uma redução na produção de CO, enquanto que a produção de CH4 sofre pouco efeito pela variação da fração de vapor utilizado. O efeito do agente de gaseificação, para uma mesma fração em relação à biomassa, indica que a gaseificação com vapor de água produz uma maior fração de H2 e CH4 quando comparado à gaseificação com ar e o contrário acontece em relação à produção de CO.
id UFPE_070fb416829a7b5fc30474f1b02bc79d
oai_identifier_str oai:repositorio.ufpe.br:123456789/17934
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SILVA, Jarmison de Araújohttp://lattes.cnpq.br/6308932418257497http://lattes.cnpq.br/5940127221480832GUERRERO, Jorge Recarte Henríquez2016-09-28T18:19:36Z2016-09-28T18:19:36Z2016-02-26https://repositorio.ufpe.br/handle/123456789/17934No cenário atual brasileiro a energia de biomassa aparece como uma oportunidade de singular importância por colaborar com um montante de aproximadamente 25% da oferta total de energia do país. Além da biomassa tradicional, contabilizada no balanço energético nacional, existe um grande potencial nos resíduos agrícolas, industriais e urbanos para fins energéticos. No uso da biomassa para fins energéticos, em particular a produção de eletricidade, podem ser utilizadas tecnologias que envolvem combustão direta da biomassa (ciclos a vapor, por exemplo) ou tecnologias que requerem a necessidade de conversão da biomassa em combustíveis líquidos ou gasosos antes da sua combustão. Exemplos do último caso são as tecnologias que fazem uso de gaseificação, biodigestão e pirólise. A grande vantagem na conversão de biomassa em combustíveis líquidos e gasosos é o aumento da flexibilidade de uso destes combustíveis em motores de combustão interna e turbinas a gás. Os processos termoquímicos da pirólise e a gaseificação podem ser definidos como a degradação térmica de qualquer material orgânico sólido na ausência total ou parcial de um agente oxidante, ou em uma quantidade tal que a oxidação não seja completa, dando origem a compostos químicos que tem potencial energético para serem utilizados como combustíveis se assim for requerido. O presente trabalho representa um estudo numérico do processo de gaseificação considerando uma modelagem que envolve equilíbrio químico e as equações de reações principais que atuam na transformação termoquímica via gaseificação. O modelo foi validado com resultados experimentais e aplicado a um estudo paramétrico envolvendo fontes de biomassa da região nordeste do Brasil, diferentes condições de temperatura de reação, dois diferentes agentes de gaseificação e variação da fração do agente de gaseificação em relação à biomassa. Os resultados mostram, entre outras conclusões, que o aumento da temperatura do reator aumenta a fração de H2 e CO em detrimento da formação de CH4. Este comportamento ocorre para os dois agentes de gaseificação utilizados (vapor e ar), embora com algumas diferenças nos valores das frações dos gases produzidos. Por sua vez, o aumento na fração do vapor como agente de gaseificação causa um aumento na produção de H2 e uma redução na produção de CO, enquanto que a produção de CH4 sofre pouco efeito pela variação da fração de vapor utilizado. O efeito do agente de gaseificação, para uma mesma fração em relação à biomassa, indica que a gaseificação com vapor de água produz uma maior fração de H2 e CH4 quando comparado à gaseificação com ar e o contrário acontece em relação à produção de CO.CAPES, PFRHIn the Brazilian current scenario biomass energy appears as an opportunity of singular importance for collaborating with an amount of approximately 25% of total energy supply of the country. In addition to traditional biomass, accounted for in the national energy balance, there is great potential in agricultural, industrial and municipal waste for energy purposes. In the use of biomass for energy purposes, in particular for the production of electricity, may be used technologies involving direct biomass combustion (steam cycles, for example) or technologies that require the need for conversion of biomass into liquid or gaseous fuels before its combustion. Examples of this latter case are the technologies that make use of gasification and pyrolysis digestion. The great advantage of the conversion of biomass into liquid and gas is the increased flexibility of use of these fuels in internal combustion engines and gas turbine engines. The thermochemical processes of pyrolysis and gasification can be defined as the thermal degradation of any solid organic material in the total or partial absence of an oxidizing agent, or in such an amount that oxidation is not complete, giving rise to chemical compounds that have potential energy to be used as fuels if so required. This study is a numerical study of the gasification process considering a modeling involving chemical equilibrium and the main reaction equations that work in the thermochemical conversion via gasification. The model was validated with experimental results and applied to a parametric study of sources of biomass northeast region of Brazil, different reaction temperatures, two different gasification agents and varying the fraction of the gasification agent in relation to biomass. The results show, among other findings, that the increase in reactor temperature increases the fraction of CO and H2 instead of formation of CH4. This behavior occurs for both gasification agents used (steam and air), although with some differences in the values of fractions of produced gases. In turn, the increase in the fraction of steam as gasification agent causes an increase in H2 production and a reduction in CO production while producing CH4 undergoes little effect on the variation of the vapor fraction used. The effect of the gasification agent, to the same fraction in relation to the biomass gasification indicate that the water vapor produces a larger fraction of H2 and CH 4 when compared with air gasification and the reverse is the case for carbon monoxide production.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia MecanicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBiomassa, Gaseificação, Simulação numérica, Eficiência TérmicaBiomass gasification, Numerical simulation, Thermal EfficiencyAnálise paramétrica da transformação termoquímica de biomassa via processo de gaseificação: uma abordagem numéricainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILJarmison de Araújo Silva_Programa de pós-Graduação em Engenharia Mecânica_Centro de Tecnologia e .pdf.jpgJarmison de Araújo Silva_Programa de pós-Graduação em Engenharia Mecânica_Centro de Tecnologia e .pdf.jpgGenerated Thumbnailimage/jpeg1120https://repositorio.ufpe.br/bitstream/123456789/17934/5/Jarmison%20de%20Ara%c3%bajo%20Silva_Programa%20de%20p%c3%b3s-Gradua%c3%a7%c3%a3o%20em%20Engenharia%20Mec%c3%a2nica_Centro%20de%20Tecnologia%20e%20.pdf.jpgce93c9a65ca335e359d9dfd044fcdc73MD55ORIGINALJarmison de Araújo Silva_Programa de pós-Graduação em Engenharia Mecânica_Centro de Tecnologia e .pdfJarmison de Araújo Silva_Programa de pós-Graduação em Engenharia Mecânica_Centro de Tecnologia e .pdfapplication/pdf2062372https://repositorio.ufpe.br/bitstream/123456789/17934/1/Jarmison%20de%20Ara%c3%bajo%20Silva_Programa%20de%20p%c3%b3s-Gradua%c3%a7%c3%a3o%20em%20Engenharia%20Mec%c3%a2nica_Centro%20de%20Tecnologia%20e%20.pdf0382d3abc9db2bf28ffdcfe8a828adceMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/17934/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/17934/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTJarmison de Araújo Silva_Programa de pós-Graduação em Engenharia Mecânica_Centro de Tecnologia e .pdf.txtJarmison de Araújo Silva_Programa de pós-Graduação em Engenharia Mecânica_Centro de Tecnologia e .pdf.txtExtracted texttext/plain147544https://repositorio.ufpe.br/bitstream/123456789/17934/4/Jarmison%20de%20Ara%c3%bajo%20Silva_Programa%20de%20p%c3%b3s-Gradua%c3%a7%c3%a3o%20em%20Engenharia%20Mec%c3%a2nica_Centro%20de%20Tecnologia%20e%20.pdf.txte3be328ced0b430641c25934e274049bMD54123456789/179342019-10-25 12:59:37.534oai:repositorio.ufpe.br:123456789/17934TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:59:37Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Análise paramétrica da transformação termoquímica de biomassa via processo de gaseificação: uma abordagem numérica
title Análise paramétrica da transformação termoquímica de biomassa via processo de gaseificação: uma abordagem numérica
spellingShingle Análise paramétrica da transformação termoquímica de biomassa via processo de gaseificação: uma abordagem numérica
SILVA, Jarmison de Araújo
Biomassa, Gaseificação, Simulação numérica, Eficiência Térmica
Biomass gasification, Numerical simulation, Thermal Efficiency
title_short Análise paramétrica da transformação termoquímica de biomassa via processo de gaseificação: uma abordagem numérica
title_full Análise paramétrica da transformação termoquímica de biomassa via processo de gaseificação: uma abordagem numérica
title_fullStr Análise paramétrica da transformação termoquímica de biomassa via processo de gaseificação: uma abordagem numérica
title_full_unstemmed Análise paramétrica da transformação termoquímica de biomassa via processo de gaseificação: uma abordagem numérica
title_sort Análise paramétrica da transformação termoquímica de biomassa via processo de gaseificação: uma abordagem numérica
author SILVA, Jarmison de Araújo
author_facet SILVA, Jarmison de Araújo
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6308932418257497
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5940127221480832
dc.contributor.author.fl_str_mv SILVA, Jarmison de Araújo
dc.contributor.advisor1.fl_str_mv GUERRERO, Jorge Recarte Henríquez
contributor_str_mv GUERRERO, Jorge Recarte Henríquez
dc.subject.por.fl_str_mv Biomassa, Gaseificação, Simulação numérica, Eficiência Térmica
Biomass gasification, Numerical simulation, Thermal Efficiency
topic Biomassa, Gaseificação, Simulação numérica, Eficiência Térmica
Biomass gasification, Numerical simulation, Thermal Efficiency
description No cenário atual brasileiro a energia de biomassa aparece como uma oportunidade de singular importância por colaborar com um montante de aproximadamente 25% da oferta total de energia do país. Além da biomassa tradicional, contabilizada no balanço energético nacional, existe um grande potencial nos resíduos agrícolas, industriais e urbanos para fins energéticos. No uso da biomassa para fins energéticos, em particular a produção de eletricidade, podem ser utilizadas tecnologias que envolvem combustão direta da biomassa (ciclos a vapor, por exemplo) ou tecnologias que requerem a necessidade de conversão da biomassa em combustíveis líquidos ou gasosos antes da sua combustão. Exemplos do último caso são as tecnologias que fazem uso de gaseificação, biodigestão e pirólise. A grande vantagem na conversão de biomassa em combustíveis líquidos e gasosos é o aumento da flexibilidade de uso destes combustíveis em motores de combustão interna e turbinas a gás. Os processos termoquímicos da pirólise e a gaseificação podem ser definidos como a degradação térmica de qualquer material orgânico sólido na ausência total ou parcial de um agente oxidante, ou em uma quantidade tal que a oxidação não seja completa, dando origem a compostos químicos que tem potencial energético para serem utilizados como combustíveis se assim for requerido. O presente trabalho representa um estudo numérico do processo de gaseificação considerando uma modelagem que envolve equilíbrio químico e as equações de reações principais que atuam na transformação termoquímica via gaseificação. O modelo foi validado com resultados experimentais e aplicado a um estudo paramétrico envolvendo fontes de biomassa da região nordeste do Brasil, diferentes condições de temperatura de reação, dois diferentes agentes de gaseificação e variação da fração do agente de gaseificação em relação à biomassa. Os resultados mostram, entre outras conclusões, que o aumento da temperatura do reator aumenta a fração de H2 e CO em detrimento da formação de CH4. Este comportamento ocorre para os dois agentes de gaseificação utilizados (vapor e ar), embora com algumas diferenças nos valores das frações dos gases produzidos. Por sua vez, o aumento na fração do vapor como agente de gaseificação causa um aumento na produção de H2 e uma redução na produção de CO, enquanto que a produção de CH4 sofre pouco efeito pela variação da fração de vapor utilizado. O efeito do agente de gaseificação, para uma mesma fração em relação à biomassa, indica que a gaseificação com vapor de água produz uma maior fração de H2 e CH4 quando comparado à gaseificação com ar e o contrário acontece em relação à produção de CO.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-09-28T18:19:36Z
dc.date.available.fl_str_mv 2016-09-28T18:19:36Z
dc.date.issued.fl_str_mv 2016-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/17934
url https://repositorio.ufpe.br/handle/123456789/17934
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Engenharia Mecanica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/17934/5/Jarmison%20de%20Ara%c3%bajo%20Silva_Programa%20de%20p%c3%b3s-Gradua%c3%a7%c3%a3o%20em%20Engenharia%20Mec%c3%a2nica_Centro%20de%20Tecnologia%20e%20.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/17934/1/Jarmison%20de%20Ara%c3%bajo%20Silva_Programa%20de%20p%c3%b3s-Gradua%c3%a7%c3%a3o%20em%20Engenharia%20Mec%c3%a2nica_Centro%20de%20Tecnologia%20e%20.pdf
https://repositorio.ufpe.br/bitstream/123456789/17934/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/17934/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/17934/4/Jarmison%20de%20Ara%c3%bajo%20Silva_Programa%20de%20p%c3%b3s-Gradua%c3%a7%c3%a3o%20em%20Engenharia%20Mec%c3%a2nica_Centro%20de%20Tecnologia%20e%20.pdf.txt
bitstream.checksum.fl_str_mv ce93c9a65ca335e359d9dfd044fcdc73
0382d3abc9db2bf28ffdcfe8a828adce
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
e3be328ced0b430641c25934e274049b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1802310890240868352