Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000tf73 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2315 |
Resumo: | A celeridade processual das Cortes de Decisão indica grau de desenvolvimento das nações. A morosidade processual, por sua vez, pode ser usada para medir o seu nível de subdesenvolvimento, uma vez que causa prejuízos sociais, ao erário e, mais especificamente, ao cidadão que é parte em um processo. No Brasil, trata-se de um problema real, de larga escala, cuja solução ainda não foi investigada usando as técnicas de mineração de dados, conforme demonstra a pesquisa realizada em todos os 33 (trinta e três) Tribunais de Contas nacionais. Este trabalho investiga a aplicação de mineração de dados como metodologia de tecnologia da informação para apoio à solução do problema da morosidade processual e do retrabalho, que resultam em aumento dos estoques de processos nas Cortes de Decisão. As bases de dados foram integradas, os dados foram transformados, o conhecimento foi extraído e o desempenho dos modelos avaliado. Para extração do conhecimento, foram utilizadas técnicas de Inteligência Artificial, tradicionalmente aceitas: Regras de Classificação, para a descrição das condições que influenciam o problema e, Redes Neurais Artificiais, para a construção dos classificadores. A qualidade da solução desenvolvida e sua aceitação pelos especialistas no domínio mostraram a viabilidade de utilizar Mineração de Dados para apoio à decisão gerencial na administração do estoque de processos dos Tribunais de Contas. Para o estudo de caso foram utilizados os dados do Tribunal de Contas do Estado de Pernambuco |
id |
UFPE_0e58659f9ff8496618cb39f817679429 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2315 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Uilma Rodrigues dos Santos de Sousa, MariaJorge Leitão Adeodato, Paulo 2014-06-12T15:56:38Z2014-06-12T15:56:38Z2010-01-31Uilma Rodrigues dos Santos de Sousa, Maria; Jorge Leitão Adeodato, Paulo. Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE). 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.https://repositorio.ufpe.br/handle/123456789/2315ark:/64986/001300000tf73A celeridade processual das Cortes de Decisão indica grau de desenvolvimento das nações. A morosidade processual, por sua vez, pode ser usada para medir o seu nível de subdesenvolvimento, uma vez que causa prejuízos sociais, ao erário e, mais especificamente, ao cidadão que é parte em um processo. No Brasil, trata-se de um problema real, de larga escala, cuja solução ainda não foi investigada usando as técnicas de mineração de dados, conforme demonstra a pesquisa realizada em todos os 33 (trinta e três) Tribunais de Contas nacionais. Este trabalho investiga a aplicação de mineração de dados como metodologia de tecnologia da informação para apoio à solução do problema da morosidade processual e do retrabalho, que resultam em aumento dos estoques de processos nas Cortes de Decisão. As bases de dados foram integradas, os dados foram transformados, o conhecimento foi extraído e o desempenho dos modelos avaliado. Para extração do conhecimento, foram utilizadas técnicas de Inteligência Artificial, tradicionalmente aceitas: Regras de Classificação, para a descrição das condições que influenciam o problema e, Redes Neurais Artificiais, para a construção dos classificadores. A qualidade da solução desenvolvida e sua aceitação pelos especialistas no domínio mostraram a viabilidade de utilizar Mineração de Dados para apoio à decisão gerencial na administração do estoque de processos dos Tribunais de Contas. Para o estudo de caso foram utilizados os dados do Tribunal de Contas do Estado de PernambucoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMineração de DadosRedes Neurais ArtificiaisRegras de ClassificaçãoControle externoTribunais de ContasMorosidade ProcessualRetrabalhoMineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALarquivo2958_1.pdfapplication/pdf2624002https://repositorio.ufpe.br/bitstream/123456789/2315/1/arquivo2958_1.pdf513ebfc26b253d09c042e76312480f61MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2315/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo2958_1.pdf.txtarquivo2958_1.pdf.txtExtracted texttext/plain258811https://repositorio.ufpe.br/bitstream/123456789/2315/3/arquivo2958_1.pdf.txte23adba1ab5c4e3143be2a411578dc82MD53THUMBNAILarquivo2958_1.pdf.jpgarquivo2958_1.pdf.jpgGenerated Thumbnailimage/jpeg1300https://repositorio.ufpe.br/bitstream/123456789/2315/4/arquivo2958_1.pdf.jpgf22bd201420dba9ac0022ce95fb2006cMD54123456789/23152019-10-25 02:50:29.017oai:repositorio.ufpe.br:123456789/2315Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:50:29Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE) |
title |
Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE) |
spellingShingle |
Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE) Uilma Rodrigues dos Santos de Sousa, Maria Mineração de Dados Redes Neurais Artificiais Regras de Classificação Controle externo Tribunais de Contas Morosidade Processual Retrabalho |
title_short |
Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE) |
title_full |
Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE) |
title_fullStr |
Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE) |
title_full_unstemmed |
Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE) |
title_sort |
Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE) |
author |
Uilma Rodrigues dos Santos de Sousa, Maria |
author_facet |
Uilma Rodrigues dos Santos de Sousa, Maria |
author_role |
author |
dc.contributor.author.fl_str_mv |
Uilma Rodrigues dos Santos de Sousa, Maria |
dc.contributor.advisor1.fl_str_mv |
Jorge Leitão Adeodato, Paulo |
contributor_str_mv |
Jorge Leitão Adeodato, Paulo |
dc.subject.por.fl_str_mv |
Mineração de Dados Redes Neurais Artificiais Regras de Classificação Controle externo Tribunais de Contas Morosidade Processual Retrabalho |
topic |
Mineração de Dados Redes Neurais Artificiais Regras de Classificação Controle externo Tribunais de Contas Morosidade Processual Retrabalho |
description |
A celeridade processual das Cortes de Decisão indica grau de desenvolvimento das nações. A morosidade processual, por sua vez, pode ser usada para medir o seu nível de subdesenvolvimento, uma vez que causa prejuízos sociais, ao erário e, mais especificamente, ao cidadão que é parte em um processo. No Brasil, trata-se de um problema real, de larga escala, cuja solução ainda não foi investigada usando as técnicas de mineração de dados, conforme demonstra a pesquisa realizada em todos os 33 (trinta e três) Tribunais de Contas nacionais. Este trabalho investiga a aplicação de mineração de dados como metodologia de tecnologia da informação para apoio à solução do problema da morosidade processual e do retrabalho, que resultam em aumento dos estoques de processos nas Cortes de Decisão. As bases de dados foram integradas, os dados foram transformados, o conhecimento foi extraído e o desempenho dos modelos avaliado. Para extração do conhecimento, foram utilizadas técnicas de Inteligência Artificial, tradicionalmente aceitas: Regras de Classificação, para a descrição das condições que influenciam o problema e, Redes Neurais Artificiais, para a construção dos classificadores. A qualidade da solução desenvolvida e sua aceitação pelos especialistas no domínio mostraram a viabilidade de utilizar Mineração de Dados para apoio à decisão gerencial na administração do estoque de processos dos Tribunais de Contas. Para o estudo de caso foram utilizados os dados do Tribunal de Contas do Estado de Pernambuco |
publishDate |
2010 |
dc.date.issued.fl_str_mv |
2010-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:56:38Z |
dc.date.available.fl_str_mv |
2014-06-12T15:56:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Uilma Rodrigues dos Santos de Sousa, Maria; Jorge Leitão Adeodato, Paulo. Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE). 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2315 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000tf73 |
identifier_str_mv |
Uilma Rodrigues dos Santos de Sousa, Maria; Jorge Leitão Adeodato, Paulo. Mineração de dados aplicada à celeridade processual do tribunal de contas do estado de Pernambuco (TCE-PE). 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010. ark:/64986/001300000tf73 |
url |
https://repositorio.ufpe.br/handle/123456789/2315 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2315/1/arquivo2958_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2315/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2315/3/arquivo2958_1.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/2315/4/arquivo2958_1.pdf.jpg |
bitstream.checksum.fl_str_mv |
513ebfc26b253d09c042e76312480f61 8a4605be74aa9ea9d79846c1fba20a33 e23adba1ab5c4e3143be2a411578dc82 f22bd201420dba9ac0022ce95fb2006c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172914709790720 |