Seleção e ponderação de características: uma metodologia que integra otimização global e local

Detalhes bibliográficos
Autor(a) principal: BARROS, Adélia Carolina de Andrade
Data de Publicação: 2008
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000x074
Texto Completo: https://repositorio.ufpe.br/handle/123456789/26612
Resumo: Esta dissertação apresenta um estudo sobre o uso de Sistemas Híbridos para a tarefa de Seleção e Ponderação simultâneas de conjuntos de características. Ela é composto de três partes principais: (1) a apresentação de uma metodologia para lidar com Seleção e Ponderação como um problema de otimização global, (2) descrição do modelo híbrido que integra busca global e local e (3) avaliação das abordagens híbridas propostas. Foram investigadas duas arquiteturas híbridas inteligentes: a primeira delas combina Tabu Search com o algoritmo de busca local Relief e a segunda integra Simulated Annealing com o Relief. Ambas abordagens procuram combinar as principais vantagens dos métodos de otimização global com as dos métodos de convergência local: métodos de otimização são bastante eficientes na busca do espaço global enquanto métodos de convergência fazem uma busca local mais refinada. A metodologia utilizada neste trabalho para representar Seleção e Ponderação como um problema de busca foi proposta por Tahir et al. TAHIR; BOURIDANE; KORUGOLLU (2007). No referido trabalho, o método de busca utilizado foi apenas Tabu Search. O presente trabalho traz a adaptação desta metodologia também para o Simulated Annealing. Os resultados demonstraram que os conjuntos de características otimizados são mais eficientes que aqueles que não passaram por nenhum processo de otimização. Além disto, o modelo híbrido proposto, que faz uso também de otimização local, melhorou ainda mais o desempenho do classificador. As conclusões levaram em consideração não somente a taxa de acerto de classificação, mas também a redução da dimensão do conjunto de características.
id UFPE_115e8620e30d7995b2233d29483d88ab
oai_identifier_str oai:repositorio.ufpe.br:123456789/26612
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling BARROS, Adélia Carolina de Andradehttp://lattes.cnpq.br/4933605636184666http://lattes.cnpq.br/8577312109146354CAVALCANTI, George Darmiton da Cunha2018-09-17T19:51:57Z2018-09-17T19:51:57Z2008-08-28https://repositorio.ufpe.br/handle/123456789/26612ark:/64986/001300000x074Esta dissertação apresenta um estudo sobre o uso de Sistemas Híbridos para a tarefa de Seleção e Ponderação simultâneas de conjuntos de características. Ela é composto de três partes principais: (1) a apresentação de uma metodologia para lidar com Seleção e Ponderação como um problema de otimização global, (2) descrição do modelo híbrido que integra busca global e local e (3) avaliação das abordagens híbridas propostas. Foram investigadas duas arquiteturas híbridas inteligentes: a primeira delas combina Tabu Search com o algoritmo de busca local Relief e a segunda integra Simulated Annealing com o Relief. Ambas abordagens procuram combinar as principais vantagens dos métodos de otimização global com as dos métodos de convergência local: métodos de otimização são bastante eficientes na busca do espaço global enquanto métodos de convergência fazem uma busca local mais refinada. A metodologia utilizada neste trabalho para representar Seleção e Ponderação como um problema de busca foi proposta por Tahir et al. TAHIR; BOURIDANE; KORUGOLLU (2007). No referido trabalho, o método de busca utilizado foi apenas Tabu Search. O presente trabalho traz a adaptação desta metodologia também para o Simulated Annealing. Os resultados demonstraram que os conjuntos de características otimizados são mais eficientes que aqueles que não passaram por nenhum processo de otimização. Além disto, o modelo híbrido proposto, que faz uso também de otimização local, melhorou ainda mais o desempenho do classificador. As conclusões levaram em consideração não somente a taxa de acerto de classificação, mas também a redução da dimensão do conjunto de características.This dissertation presents a study about the use of Hybrid Systems for simultaneous Feature Selection and Weighting. It is composed by three main parts: (1) the presentation of a methodology which handles to Selection and Weighting as a global optimization problem, (2) the description of the model composed by global and local searches, (3) the evaluation of the proposed hybrid approaches. Two intelligent hybrid architectures were investigated: the first one combines Tabu Search with the local search algorithm Relief and the second one integrates Simulated Annealing with Relief. Both approaches attempt to combine the main advantages of the global optimization methods with those of the local convergency methods: optimization methods are pretty efficient in the global search space while convergency methods make a more accurate local search. The methodology used in this work to formulate Feature Selection and Weighting as a search problem was proposed by Tahir et al. TAHIR; BOURIDANE; KORUGOLLU (2007). In the referred work, Tabu Search was used as search algorithm. This work brings an adaptation from that methodology for Simulated Annealing. The results evidenced that the features sets optimized were more efficient than those in which any optimization process was applied. Moreover, the proposed hybrid model, which uses also local optimization, improved even more the classifier accuracy. Conclusions consider not only the accuracy rate but also the reduction in feature sets dimension.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência artificialReconhecimento de padrãoSeleção e ponderação de características: uma metodologia que integra otimização global e localinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Adélia Carolina de Andrade Barros.pdf.jpgDISSERTAÇÃO Adélia Carolina de Andrade Barros.pdf.jpgGenerated Thumbnailimage/jpeg1288https://repositorio.ufpe.br/bitstream/123456789/26612/5/DISSERTA%c3%87%c3%83O%20Ad%c3%a9lia%20Carolina%20de%20Andrade%20Barros.pdf.jpgdf6325b94e5eb9fd10cad7c54cac8d47MD55ORIGINALDISSERTAÇÃO Adélia Carolina de Andrade Barros.pdfDISSERTAÇÃO Adélia Carolina de Andrade Barros.pdfapplication/pdf665097https://repositorio.ufpe.br/bitstream/123456789/26612/1/DISSERTA%c3%87%c3%83O%20Ad%c3%a9lia%20Carolina%20de%20Andrade%20Barros.pdfb0b790ccd11df62aac51b8ebc7d3b501MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/26612/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/26612/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Adélia Carolina de Andrade Barros.pdf.txtDISSERTAÇÃO Adélia Carolina de Andrade Barros.pdf.txtExtracted texttext/plain158722https://repositorio.ufpe.br/bitstream/123456789/26612/4/DISSERTA%c3%87%c3%83O%20Ad%c3%a9lia%20Carolina%20de%20Andrade%20Barros.pdf.txtb8866a26ff1161e15de856db47a1c004MD54123456789/266122019-10-26 02:27:49.31oai:repositorio.ufpe.br:123456789/26612TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T05:27:49Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Seleção e ponderação de características: uma metodologia que integra otimização global e local
title Seleção e ponderação de características: uma metodologia que integra otimização global e local
spellingShingle Seleção e ponderação de características: uma metodologia que integra otimização global e local
BARROS, Adélia Carolina de Andrade
Inteligência artificial
Reconhecimento de padrão
title_short Seleção e ponderação de características: uma metodologia que integra otimização global e local
title_full Seleção e ponderação de características: uma metodologia que integra otimização global e local
title_fullStr Seleção e ponderação de características: uma metodologia que integra otimização global e local
title_full_unstemmed Seleção e ponderação de características: uma metodologia que integra otimização global e local
title_sort Seleção e ponderação de características: uma metodologia que integra otimização global e local
author BARROS, Adélia Carolina de Andrade
author_facet BARROS, Adélia Carolina de Andrade
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4933605636184666
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8577312109146354
dc.contributor.author.fl_str_mv BARROS, Adélia Carolina de Andrade
dc.contributor.advisor1.fl_str_mv CAVALCANTI, George Darmiton da Cunha
contributor_str_mv CAVALCANTI, George Darmiton da Cunha
dc.subject.por.fl_str_mv Inteligência artificial
Reconhecimento de padrão
topic Inteligência artificial
Reconhecimento de padrão
description Esta dissertação apresenta um estudo sobre o uso de Sistemas Híbridos para a tarefa de Seleção e Ponderação simultâneas de conjuntos de características. Ela é composto de três partes principais: (1) a apresentação de uma metodologia para lidar com Seleção e Ponderação como um problema de otimização global, (2) descrição do modelo híbrido que integra busca global e local e (3) avaliação das abordagens híbridas propostas. Foram investigadas duas arquiteturas híbridas inteligentes: a primeira delas combina Tabu Search com o algoritmo de busca local Relief e a segunda integra Simulated Annealing com o Relief. Ambas abordagens procuram combinar as principais vantagens dos métodos de otimização global com as dos métodos de convergência local: métodos de otimização são bastante eficientes na busca do espaço global enquanto métodos de convergência fazem uma busca local mais refinada. A metodologia utilizada neste trabalho para representar Seleção e Ponderação como um problema de busca foi proposta por Tahir et al. TAHIR; BOURIDANE; KORUGOLLU (2007). No referido trabalho, o método de busca utilizado foi apenas Tabu Search. O presente trabalho traz a adaptação desta metodologia também para o Simulated Annealing. Os resultados demonstraram que os conjuntos de características otimizados são mais eficientes que aqueles que não passaram por nenhum processo de otimização. Além disto, o modelo híbrido proposto, que faz uso também de otimização local, melhorou ainda mais o desempenho do classificador. As conclusões levaram em consideração não somente a taxa de acerto de classificação, mas também a redução da dimensão do conjunto de características.
publishDate 2008
dc.date.issued.fl_str_mv 2008-08-28
dc.date.accessioned.fl_str_mv 2018-09-17T19:51:57Z
dc.date.available.fl_str_mv 2018-09-17T19:51:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/26612
dc.identifier.dark.fl_str_mv ark:/64986/001300000x074
url https://repositorio.ufpe.br/handle/123456789/26612
identifier_str_mv ark:/64986/001300000x074
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/26612/5/DISSERTA%c3%87%c3%83O%20Ad%c3%a9lia%20Carolina%20de%20Andrade%20Barros.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/26612/1/DISSERTA%c3%87%c3%83O%20Ad%c3%a9lia%20Carolina%20de%20Andrade%20Barros.pdf
https://repositorio.ufpe.br/bitstream/123456789/26612/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/26612/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/26612/4/DISSERTA%c3%87%c3%83O%20Ad%c3%a9lia%20Carolina%20de%20Andrade%20Barros.pdf.txt
bitstream.checksum.fl_str_mv df6325b94e5eb9fd10cad7c54cac8d47
b0b790ccd11df62aac51b8ebc7d3b501
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
b8866a26ff1161e15de856db47a1c004
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172939329306624