Inferência em modelos heteroscedásticos na presença de pontos de alavanca
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/00130000006r2 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/6582 |
Resumo: | Técnicas clássicas de regressão linear assumem que os erros, que representam a componente aleatória do modelo, têm variância constante, ou seja, assumem homoscedasticidade. Contudo, esta suposição é bastante forte e, em uma relevante parte dos problemas práticos, muito pouco razoável. A presente dissertação considera a estimação consistente da matriz de covariâncias do estimador de mínimos quadrados ordinários em um modelo de regressão linear sob heteroscedasticidade de forma desconhecida. O estimador mais usado é aquele proposto por Halbert White, conhecido como HC0. Consideramos também outros estimadores consistentes, a saber: o estimador HC3, que é uma aproximação do estimador jackknife, e o estimador HC4 proposto por Cribari Neto (2004), que leva em consideração ao o efeito de pontos de alta alavancagem em amostras finitas. Dois estimadores consistentes obtidos a partir de esquemas de reamostragem de bootstrap são também considerados. Nós propomos, com base no estimador HC4, um novo estimador: HC5. Este estimador é o primeiro estimador na classe dos estimadores consistentes da matriz de covariâncias do estimador de mínimos quadrados a incorporar termos de descontos que se ajustam a variações no grau máximo de alavancagem dos dados. Nós apresentamos resultados de simulação de Monte Carlo sobre o desempenho de testes quasi-t cujas estatísticas são baseadas nos diferentes estimadores consistentes. A avaliação é realizada tanto sob homoscedasticidade quanto sob heteroscedasticidade e os resultados revelam que o teste construído a partir do estimador HC5 tipicamente apresenta desempenho superior aos demais testes considerados. No que se refere a inferência via bootstrap, há muito pouco ganho em amostras finitas em se usar o esquema de reamostragem de bootstrap ponderado para realizar testes bootstrap, estimando-se valores p ou valores críticos, ao invés de se utilizar o bootstrap ponderado para estimação de erros-padrão a serem utilizados em estatísticas de teste convencionais. Nossos resultados também revelam que a presença de pontos de alta alavancagem exerce um papel importante no desempenho dos diferentes estimadores consistentes em amostras de tamanho típico. Algumas aplicações empíricas são, por fim, apresentadas |
id |
UFPE_1383d7a5581fd5b2ed10996ae959c461 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/6582 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Correia de Souza, TatieneCribari Neto, Francisco 2014-06-12T18:06:15Z2014-06-12T18:06:15Z2003Correia de Souza, Tatiene; Cribari Neto, Francisco. Inferência em modelos heteroscedásticos na presença de pontos de alavanca. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2003.https://repositorio.ufpe.br/handle/123456789/6582ark:/64986/00130000006r2Técnicas clássicas de regressão linear assumem que os erros, que representam a componente aleatória do modelo, têm variância constante, ou seja, assumem homoscedasticidade. Contudo, esta suposição é bastante forte e, em uma relevante parte dos problemas práticos, muito pouco razoável. A presente dissertação considera a estimação consistente da matriz de covariâncias do estimador de mínimos quadrados ordinários em um modelo de regressão linear sob heteroscedasticidade de forma desconhecida. O estimador mais usado é aquele proposto por Halbert White, conhecido como HC0. Consideramos também outros estimadores consistentes, a saber: o estimador HC3, que é uma aproximação do estimador jackknife, e o estimador HC4 proposto por Cribari Neto (2004), que leva em consideração ao o efeito de pontos de alta alavancagem em amostras finitas. Dois estimadores consistentes obtidos a partir de esquemas de reamostragem de bootstrap são também considerados. Nós propomos, com base no estimador HC4, um novo estimador: HC5. Este estimador é o primeiro estimador na classe dos estimadores consistentes da matriz de covariâncias do estimador de mínimos quadrados a incorporar termos de descontos que se ajustam a variações no grau máximo de alavancagem dos dados. Nós apresentamos resultados de simulação de Monte Carlo sobre o desempenho de testes quasi-t cujas estatísticas são baseadas nos diferentes estimadores consistentes. A avaliação é realizada tanto sob homoscedasticidade quanto sob heteroscedasticidade e os resultados revelam que o teste construído a partir do estimador HC5 tipicamente apresenta desempenho superior aos demais testes considerados. No que se refere a inferência via bootstrap, há muito pouco ganho em amostras finitas em se usar o esquema de reamostragem de bootstrap ponderado para realizar testes bootstrap, estimando-se valores p ou valores críticos, ao invés de se utilizar o bootstrap ponderado para estimação de erros-padrão a serem utilizados em estatísticas de teste convencionais. Nossos resultados também revelam que a presença de pontos de alta alavancagem exerce um papel importante no desempenho dos diferentes estimadores consistentes em amostras de tamanho típico. Algumas aplicações empíricas são, por fim, apresentadasCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessHeteroscedasticidadeRegressãoTestes quasi-tInferência em modelos heteroscedásticos na presença de pontos de alavancainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo7253_1.pdf.jpgarquivo7253_1.pdf.jpgGenerated Thumbnailimage/jpeg1220https://repositorio.ufpe.br/bitstream/123456789/6582/4/arquivo7253_1.pdf.jpgd01cd793b9c438634b6c82819681f01bMD54ORIGINALarquivo7253_1.pdfapplication/pdf573098https://repositorio.ufpe.br/bitstream/123456789/6582/1/arquivo7253_1.pdfb629eacebc3655d6a473531ecdcde631MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/6582/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo7253_1.pdf.txtarquivo7253_1.pdf.txtExtracted texttext/plain160225https://repositorio.ufpe.br/bitstream/123456789/6582/3/arquivo7253_1.pdf.txtd2a86199b8d639f204f0418e0ad1912cMD53123456789/65822019-10-25 12:13:27.763oai:repositorio.ufpe.br:123456789/6582Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:13:27Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Inferência em modelos heteroscedásticos na presença de pontos de alavanca |
title |
Inferência em modelos heteroscedásticos na presença de pontos de alavanca |
spellingShingle |
Inferência em modelos heteroscedásticos na presença de pontos de alavanca Correia de Souza, Tatiene Heteroscedasticidade Regressão Testes quasi-t |
title_short |
Inferência em modelos heteroscedásticos na presença de pontos de alavanca |
title_full |
Inferência em modelos heteroscedásticos na presença de pontos de alavanca |
title_fullStr |
Inferência em modelos heteroscedásticos na presença de pontos de alavanca |
title_full_unstemmed |
Inferência em modelos heteroscedásticos na presença de pontos de alavanca |
title_sort |
Inferência em modelos heteroscedásticos na presença de pontos de alavanca |
author |
Correia de Souza, Tatiene |
author_facet |
Correia de Souza, Tatiene |
author_role |
author |
dc.contributor.author.fl_str_mv |
Correia de Souza, Tatiene |
dc.contributor.advisor1.fl_str_mv |
Cribari Neto, Francisco |
contributor_str_mv |
Cribari Neto, Francisco |
dc.subject.por.fl_str_mv |
Heteroscedasticidade Regressão Testes quasi-t |
topic |
Heteroscedasticidade Regressão Testes quasi-t |
description |
Técnicas clássicas de regressão linear assumem que os erros, que representam a componente aleatória do modelo, têm variância constante, ou seja, assumem homoscedasticidade. Contudo, esta suposição é bastante forte e, em uma relevante parte dos problemas práticos, muito pouco razoável. A presente dissertação considera a estimação consistente da matriz de covariâncias do estimador de mínimos quadrados ordinários em um modelo de regressão linear sob heteroscedasticidade de forma desconhecida. O estimador mais usado é aquele proposto por Halbert White, conhecido como HC0. Consideramos também outros estimadores consistentes, a saber: o estimador HC3, que é uma aproximação do estimador jackknife, e o estimador HC4 proposto por Cribari Neto (2004), que leva em consideração ao o efeito de pontos de alta alavancagem em amostras finitas. Dois estimadores consistentes obtidos a partir de esquemas de reamostragem de bootstrap são também considerados. Nós propomos, com base no estimador HC4, um novo estimador: HC5. Este estimador é o primeiro estimador na classe dos estimadores consistentes da matriz de covariâncias do estimador de mínimos quadrados a incorporar termos de descontos que se ajustam a variações no grau máximo de alavancagem dos dados. Nós apresentamos resultados de simulação de Monte Carlo sobre o desempenho de testes quasi-t cujas estatísticas são baseadas nos diferentes estimadores consistentes. A avaliação é realizada tanto sob homoscedasticidade quanto sob heteroscedasticidade e os resultados revelam que o teste construído a partir do estimador HC5 tipicamente apresenta desempenho superior aos demais testes considerados. No que se refere a inferência via bootstrap, há muito pouco ganho em amostras finitas em se usar o esquema de reamostragem de bootstrap ponderado para realizar testes bootstrap, estimando-se valores p ou valores críticos, ao invés de se utilizar o bootstrap ponderado para estimação de erros-padrão a serem utilizados em estatísticas de teste convencionais. Nossos resultados também revelam que a presença de pontos de alta alavancagem exerce um papel importante no desempenho dos diferentes estimadores consistentes em amostras de tamanho típico. Algumas aplicações empíricas são, por fim, apresentadas |
publishDate |
2003 |
dc.date.issued.fl_str_mv |
2003 |
dc.date.accessioned.fl_str_mv |
2014-06-12T18:06:15Z |
dc.date.available.fl_str_mv |
2014-06-12T18:06:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Correia de Souza, Tatiene; Cribari Neto, Francisco. Inferência em modelos heteroscedásticos na presença de pontos de alavanca. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2003. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/6582 |
dc.identifier.dark.fl_str_mv |
ark:/64986/00130000006r2 |
identifier_str_mv |
Correia de Souza, Tatiene; Cribari Neto, Francisco. Inferência em modelos heteroscedásticos na presença de pontos de alavanca. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2003. ark:/64986/00130000006r2 |
url |
https://repositorio.ufpe.br/handle/123456789/6582 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/6582/4/arquivo7253_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/6582/1/arquivo7253_1.pdf https://repositorio.ufpe.br/bitstream/123456789/6582/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/6582/3/arquivo7253_1.pdf.txt |
bitstream.checksum.fl_str_mv |
d01cd793b9c438634b6c82819681f01b b629eacebc3655d6a473531ecdcde631 8a4605be74aa9ea9d79846c1fba20a33 d2a86199b8d639f204f0418e0ad1912c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172677137072128 |