Redes Neurais Probabilísticas para Classificação de Imagens Binárias
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000xv39 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/1873 |
Resumo: | Este trabalho propõe uma nova abordagem para classificação de objetos em imagens binárias de duas dimensões usando descritores de curvatura, descritores de momento e uma rede neural artificial. O modelo proposto classifica objetos utilizando uma rede neural supervisionada e, através do uso de uma distribuição de probabilidade, associa um coeficiente de certeza para cada classificação. Foram utilizados os descritores de imagens conhecidos por Momento de Hu e o Curvature Scale Space para prover uma representação invariante às transformações das imagens, enquanto que o modelo neural proposto utiliza a correlação máxima entre as representações dos objetos para efetuar a classificação e uma distribuição de probabilidade para calcular o coeficiente de certeza da classificação de cada imagem. A avaliação da robustez baseou-se na medida da precisão da classificação para imagens rotacionadas, escaladas e com transformações não-lineares que formam um conjunto de imagens padrão, usado pelo grupo MPEG na criação da norma MPEG-7, demonstrando assim a aplicabilidade do método |
id |
UFPE_13eddc6d5684b9da8e3028d80063d05f |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/1873 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
PIRES, Glauber MagalhãesARAÚJO, Aluizio Fausto Ribeiro2014-06-12T15:52:53Z2014-06-12T15:52:53Z2009-01-31Magalhães Pires, Glauber; Fausto Ribeiro Araújo, Aluizio. Redes Neurais Probabilísticas para Classificação de Imagens Binárias. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.https://repositorio.ufpe.br/handle/123456789/1873ark:/64986/001300000xv39Este trabalho propõe uma nova abordagem para classificação de objetos em imagens binárias de duas dimensões usando descritores de curvatura, descritores de momento e uma rede neural artificial. O modelo proposto classifica objetos utilizando uma rede neural supervisionada e, através do uso de uma distribuição de probabilidade, associa um coeficiente de certeza para cada classificação. Foram utilizados os descritores de imagens conhecidos por Momento de Hu e o Curvature Scale Space para prover uma representação invariante às transformações das imagens, enquanto que o modelo neural proposto utiliza a correlação máxima entre as representações dos objetos para efetuar a classificação e uma distribuição de probabilidade para calcular o coeficiente de certeza da classificação de cada imagem. A avaliação da robustez baseou-se na medida da precisão da classificação para imagens rotacionadas, escaladas e com transformações não-lineares que formam um conjunto de imagens padrão, usado pelo grupo MPEG na criação da norma MPEG-7, demonstrando assim a aplicabilidade do métodoConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRecuperação de Imagens Baseado em ConteúdoClassificação de Imagens Baseado em ConteúdoMPEG-7Rede Neural SNSIRede Neural LVQRedes Neurais Probabilísticas para Classificação de Imagens Bináriasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPELICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/1873/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALDissertacao-Versao-Biblioteca.pdfDissertacao-Versao-Biblioteca.pdfapplication/pdf2507757https://repositorio.ufpe.br/bitstream/123456789/1873/2/Dissertacao-Versao-Biblioteca.pdfd0a4b8aa539ae43c36c5858b3ceea83dMD52TEXTDissertacao-Versao-Biblioteca.pdf.txtDissertacao-Versao-Biblioteca.pdf.txtExtracted texttext/plain138504https://repositorio.ufpe.br/bitstream/123456789/1873/3/Dissertacao-Versao-Biblioteca.pdf.txt5d6b63249adf5aa87047d385a5293e66MD53THUMBNAILDissertacao-Versao-Biblioteca.pdf.jpgDissertacao-Versao-Biblioteca.pdf.jpgGenerated Thumbnailimage/jpeg1255https://repositorio.ufpe.br/bitstream/123456789/1873/4/Dissertacao-Versao-Biblioteca.pdf.jpgfbcb0c5e1b4db8603f04bfa55dc6ddf1MD54123456789/18732019-10-25 02:49:35.949oai:repositorio.ufpe.br:123456789/1873Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:49:35Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Redes Neurais Probabilísticas para Classificação de Imagens Binárias |
title |
Redes Neurais Probabilísticas para Classificação de Imagens Binárias |
spellingShingle |
Redes Neurais Probabilísticas para Classificação de Imagens Binárias PIRES, Glauber Magalhães Recuperação de Imagens Baseado em Conteúdo Classificação de Imagens Baseado em Conteúdo MPEG-7 Rede Neural SNSI Rede Neural LVQ |
title_short |
Redes Neurais Probabilísticas para Classificação de Imagens Binárias |
title_full |
Redes Neurais Probabilísticas para Classificação de Imagens Binárias |
title_fullStr |
Redes Neurais Probabilísticas para Classificação de Imagens Binárias |
title_full_unstemmed |
Redes Neurais Probabilísticas para Classificação de Imagens Binárias |
title_sort |
Redes Neurais Probabilísticas para Classificação de Imagens Binárias |
author |
PIRES, Glauber Magalhães |
author_facet |
PIRES, Glauber Magalhães |
author_role |
author |
dc.contributor.author.fl_str_mv |
PIRES, Glauber Magalhães |
dc.contributor.advisor1.fl_str_mv |
ARAÚJO, Aluizio Fausto Ribeiro |
contributor_str_mv |
ARAÚJO, Aluizio Fausto Ribeiro |
dc.subject.por.fl_str_mv |
Recuperação de Imagens Baseado em Conteúdo Classificação de Imagens Baseado em Conteúdo MPEG-7 Rede Neural SNSI Rede Neural LVQ |
topic |
Recuperação de Imagens Baseado em Conteúdo Classificação de Imagens Baseado em Conteúdo MPEG-7 Rede Neural SNSI Rede Neural LVQ |
description |
Este trabalho propõe uma nova abordagem para classificação de objetos em imagens binárias de duas dimensões usando descritores de curvatura, descritores de momento e uma rede neural artificial. O modelo proposto classifica objetos utilizando uma rede neural supervisionada e, através do uso de uma distribuição de probabilidade, associa um coeficiente de certeza para cada classificação. Foram utilizados os descritores de imagens conhecidos por Momento de Hu e o Curvature Scale Space para prover uma representação invariante às transformações das imagens, enquanto que o modelo neural proposto utiliza a correlação máxima entre as representações dos objetos para efetuar a classificação e uma distribuição de probabilidade para calcular o coeficiente de certeza da classificação de cada imagem. A avaliação da robustez baseou-se na medida da precisão da classificação para imagens rotacionadas, escaladas e com transformações não-lineares que formam um conjunto de imagens padrão, usado pelo grupo MPEG na criação da norma MPEG-7, demonstrando assim a aplicabilidade do método |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:52:53Z |
dc.date.available.fl_str_mv |
2014-06-12T15:52:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Magalhães Pires, Glauber; Fausto Ribeiro Araújo, Aluizio. Redes Neurais Probabilísticas para Classificação de Imagens Binárias. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/1873 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000xv39 |
identifier_str_mv |
Magalhães Pires, Glauber; Fausto Ribeiro Araújo, Aluizio. Redes Neurais Probabilísticas para Classificação de Imagens Binárias. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009. ark:/64986/001300000xv39 |
url |
https://repositorio.ufpe.br/handle/123456789/1873 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/1873/1/license.txt https://repositorio.ufpe.br/bitstream/123456789/1873/2/Dissertacao-Versao-Biblioteca.pdf https://repositorio.ufpe.br/bitstream/123456789/1873/3/Dissertacao-Versao-Biblioteca.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/1873/4/Dissertacao-Versao-Biblioteca.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 d0a4b8aa539ae43c36c5858b3ceea83d 5d6b63249adf5aa87047d385a5293e66 fbcb0c5e1b4db8603f04bfa55dc6ddf1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172947551191040 |