Ensaios sobre teoria assintótica em retornos SAR seguindo a distribuição Gama generalizada

Detalhes bibliográficos
Autor(a) principal: SANTOS, Ramon Lima dos
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000005bfk
Texto Completo: https://repositorio.ufpe.br/handle/123456789/24576
Resumo: Os sistemas de radar de abertura sintética (Synthetic Aperture Radar-SAR) têm sido apresentados como ferramentas eficientes na resolução de problemas de sensoriamento remoto. Tais sistemas exibem várias vantagens. Em particular, seu funcionamento independe do horário do dia e/ou das condições atmosféricas, como também eles podem fornecer imagens em alta resolução espacial. Entretanto, as imagens SAR são contaminadas por um tipo de interferência denominada ruído speckle, dificultando o reconhecimento de padrões em tais imagens por análise visual e/ou pelo uso de métodos clássicos de processamento automático. Assim, a proposta de técnicas estatísticas especializadas (incluindo modelagem e métodos inferenciais) se torna uma importante etapa no processamento e na análise de imagens SAR. Recentemente, uma versão da distribuição gama generalizada tem sido aplicada com sucesso para descrever dados SAR em formato de intensidade. Esta dissertação apresenta inicialmente uma discussão sobre estimação por máxima verossimilhança (MV) para os parâmetros do modelo gama generalizado adaptado ao contexto de dados SAR. Adicionalmente, derivamos um teorema que permite encontrar analiticamente a matriz informação de Fisher do modelo gama generalizado. Estimadores em forma fechada são propostos (sendo um deles para o número de looks, parâmetro que descreve o efeito do ruído sobre imagens SAR) e um terceiro é definido como solução de uma equação não-linear. Em segundo lugar, propomos um método de estimação melhorado para os parâmetros da distribuição gama generalizada, derivando a expressão do viés de segunda ordem de acordo com a proposta de Cox e Snell [Journal of Royal Statistical Society. Series B (Methodological), vol. 30, no. 2, pp. 248–275, 1968]. Finalmente, objetivando definir contrastes no espaço paramétrico da lei gama generalizada, derivamos seis medidas de divergência (discrepância entre duas medidas de probabilidade) com base na medida de Kullback-Leibler simetrizada e aplicamos os conceitos de testes de hipóteses fundamentados nas propriedades assintóticas da classe de divergências estudada por Salicrú et al. [Journal of Multivariate Analysis, vol. 51, pp. 372–391, 1994]. Três dentre as medidas derivadas quantificam o erro em escolher o modelo gama quando um fenômeno é regido pela distribuição gama generalizada, ou vice-versa. Duas outras medidas calculam o contraste entre dois elementos diferentes a partir da distribuição gama generalizada ou, como caso particular, da distribuição gama. Outra quantifica o erro de escolher o modelo gama generalizado trivariado não-correlacionado quando os dados seguem o modelo Wishart complexo escalonado. Esta última quantidade pode ser utilizada como um detector de redundância para uma região SAR polarimétrica; isto é, um teste de hipótese que informa quando trabalhar com modelos marginais gama generalizado é estatisticamente similar a usar distribuições matriciais. As demais medidas são definidas ou como testes de hipóteses para duas regiões de intensidades SAR ou como medidas de bondade de ajuste entre gama e gama generalizada no mesmo contexto. Para quantificar a eficiência das novas metodologias, estudos de simulação Monte Carlo são realizados bem como vários experimentos com dados SAR reais.
id UFPE_1586667f18c5b2f60d8d8741ec795cff
oai_identifier_str oai:repositorio.ufpe.br:123456789/24576
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SANTOS, Ramon Lima doshttp://lattes.cnpq.br/9329442446644595http://lattes.cnpq.br/9853084384672692NASCIMENTO, Abraão David Costa doFRERY ORGAMBIDE, Alejandro César2018-05-07T22:55:24Z2018-05-07T22:55:24Z2017-02-17https://repositorio.ufpe.br/handle/123456789/24576ark:/64986/0013000005bfkOs sistemas de radar de abertura sintética (Synthetic Aperture Radar-SAR) têm sido apresentados como ferramentas eficientes na resolução de problemas de sensoriamento remoto. Tais sistemas exibem várias vantagens. Em particular, seu funcionamento independe do horário do dia e/ou das condições atmosféricas, como também eles podem fornecer imagens em alta resolução espacial. Entretanto, as imagens SAR são contaminadas por um tipo de interferência denominada ruído speckle, dificultando o reconhecimento de padrões em tais imagens por análise visual e/ou pelo uso de métodos clássicos de processamento automático. Assim, a proposta de técnicas estatísticas especializadas (incluindo modelagem e métodos inferenciais) se torna uma importante etapa no processamento e na análise de imagens SAR. Recentemente, uma versão da distribuição gama generalizada tem sido aplicada com sucesso para descrever dados SAR em formato de intensidade. Esta dissertação apresenta inicialmente uma discussão sobre estimação por máxima verossimilhança (MV) para os parâmetros do modelo gama generalizado adaptado ao contexto de dados SAR. Adicionalmente, derivamos um teorema que permite encontrar analiticamente a matriz informação de Fisher do modelo gama generalizado. Estimadores em forma fechada são propostos (sendo um deles para o número de looks, parâmetro que descreve o efeito do ruído sobre imagens SAR) e um terceiro é definido como solução de uma equação não-linear. Em segundo lugar, propomos um método de estimação melhorado para os parâmetros da distribuição gama generalizada, derivando a expressão do viés de segunda ordem de acordo com a proposta de Cox e Snell [Journal of Royal Statistical Society. Series B (Methodological), vol. 30, no. 2, pp. 248–275, 1968]. Finalmente, objetivando definir contrastes no espaço paramétrico da lei gama generalizada, derivamos seis medidas de divergência (discrepância entre duas medidas de probabilidade) com base na medida de Kullback-Leibler simetrizada e aplicamos os conceitos de testes de hipóteses fundamentados nas propriedades assintóticas da classe de divergências estudada por Salicrú et al. [Journal of Multivariate Analysis, vol. 51, pp. 372–391, 1994]. Três dentre as medidas derivadas quantificam o erro em escolher o modelo gama quando um fenômeno é regido pela distribuição gama generalizada, ou vice-versa. Duas outras medidas calculam o contraste entre dois elementos diferentes a partir da distribuição gama generalizada ou, como caso particular, da distribuição gama. Outra quantifica o erro de escolher o modelo gama generalizado trivariado não-correlacionado quando os dados seguem o modelo Wishart complexo escalonado. Esta última quantidade pode ser utilizada como um detector de redundância para uma região SAR polarimétrica; isto é, um teste de hipótese que informa quando trabalhar com modelos marginais gama generalizado é estatisticamente similar a usar distribuições matriciais. As demais medidas são definidas ou como testes de hipóteses para duas regiões de intensidades SAR ou como medidas de bondade de ajuste entre gama e gama generalizada no mesmo contexto. Para quantificar a eficiência das novas metodologias, estudos de simulação Monte Carlo são realizados bem como vários experimentos com dados SAR reais.CAPESSynthetic aperture radar (SAR) systems have been presented as efficient tools for remote sensing. Such systems exhibit several advantages. In particular, its operation is independent of the time of day and/or atmosphere conditions, as well as they can provides images in high spatial resolution. However, SAR images are contaminated by a type of interference called speckle noise, hindering the recognition of patterns in such images by visual analysis and/or by the use of classical automatic processing methods. Thus, the proposal of specialized statistical techniques (including modeling and inferential methods) is an important step in the processing and analysis of SAR images. Recently, a version of the generalized gamma distribution (GΓ) has been successfully applied to describe SAR data in intensity format. This dissertation presents first a discussion about estimation by maximum likelihood (ML) for the parameters of the GΓ model tailored to the SAR data context. Additionally, we derive a theorem that allows to find analytically the Fisher information matrix of the GΓ model. Furthermore, two closed-form estimators are pro-posed (being one of them for the number of looks, parameter which describes the effect of noise on SAR images) and a third which is defined as a solution of one non-linear equa-tion. Second we propose an improved estimation method for the GΓ parameters, deriving the second-order bias expression according to the proposal of Cox and Snell [Journal of Royal Statistical Society. Series B (Methodological), vol. 30, no. 2, pp. 24–275, 1968]. Fi-nally, aiming to define contrasts in the GΓ law parametric space, we derive six divergence measures (discrepancy between two probability measures) based on the Kullback-Leibler measure symmetrized and we apply the concepts of hypothesis testing based on the as-symptotic properties from the h-φ class studied by Salicrú et al. [Journal of Multivariate Analysis, vol. 51, pp. 37–391, 1994]. Three of among derived measures quantify the error in choosing the Γ model when a phenomenon is governed by the GΓ distribution, or con-versely. Two other measures compute the contrast between two different elements modeled by the GΓ or the Γ distribution. Other measure quantifies the error of choosing the un-correlated trivariate GΓ model when the data follow the scaled complex Wishart model.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEstatísticaCorreção de viésEnsaios sobre teoria assintótica em retornos SAR seguindo a distribuição Gama generalizadainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Ramon Lima dos Santos.pdf.jpgDISSERTAÇÃO Ramon Lima dos Santos.pdf.jpgGenerated Thumbnailimage/jpeg1265https://repositorio.ufpe.br/bitstream/123456789/24576/4/DISSERTA%c3%87%c3%83O%20Ramon%20Lima%20dos%20Santos.pdf.jpg086867de64b8db3cd2164ba566207176MD54ORIGINALDISSERTAÇÃO Ramon Lima dos Santos.pdfDISSERTAÇÃO Ramon Lima dos Santos.pdfapplication/pdf12959729https://repositorio.ufpe.br/bitstream/123456789/24576/1/DISSERTA%c3%87%c3%83O%20Ramon%20Lima%20dos%20Santos.pdfa40bfdb41592aeeac39753ee63f66232MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/24576/2/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD52TEXTDISSERTAÇÃO Ramon Lima dos Santos.pdf.txtDISSERTAÇÃO Ramon Lima dos Santos.pdf.txtExtracted texttext/plain139652https://repositorio.ufpe.br/bitstream/123456789/24576/3/DISSERTA%c3%87%c3%83O%20Ramon%20Lima%20dos%20Santos.pdf.txt27450c16ae8fb7bfd175836260cfb99cMD53123456789/245762019-10-25 08:18:59.989oai:repositorio.ufpe.br:123456789/24576TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T11:18:59Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Ensaios sobre teoria assintótica em retornos SAR seguindo a distribuição Gama generalizada
title Ensaios sobre teoria assintótica em retornos SAR seguindo a distribuição Gama generalizada
spellingShingle Ensaios sobre teoria assintótica em retornos SAR seguindo a distribuição Gama generalizada
SANTOS, Ramon Lima dos
Estatística
Correção de viés
title_short Ensaios sobre teoria assintótica em retornos SAR seguindo a distribuição Gama generalizada
title_full Ensaios sobre teoria assintótica em retornos SAR seguindo a distribuição Gama generalizada
title_fullStr Ensaios sobre teoria assintótica em retornos SAR seguindo a distribuição Gama generalizada
title_full_unstemmed Ensaios sobre teoria assintótica em retornos SAR seguindo a distribuição Gama generalizada
title_sort Ensaios sobre teoria assintótica em retornos SAR seguindo a distribuição Gama generalizada
author SANTOS, Ramon Lima dos
author_facet SANTOS, Ramon Lima dos
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9329442446644595
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9853084384672692
dc.contributor.author.fl_str_mv SANTOS, Ramon Lima dos
dc.contributor.advisor1.fl_str_mv NASCIMENTO, Abraão David Costa do
dc.contributor.advisor-co1.fl_str_mv FRERY ORGAMBIDE, Alejandro César
contributor_str_mv NASCIMENTO, Abraão David Costa do
FRERY ORGAMBIDE, Alejandro César
dc.subject.por.fl_str_mv Estatística
Correção de viés
topic Estatística
Correção de viés
description Os sistemas de radar de abertura sintética (Synthetic Aperture Radar-SAR) têm sido apresentados como ferramentas eficientes na resolução de problemas de sensoriamento remoto. Tais sistemas exibem várias vantagens. Em particular, seu funcionamento independe do horário do dia e/ou das condições atmosféricas, como também eles podem fornecer imagens em alta resolução espacial. Entretanto, as imagens SAR são contaminadas por um tipo de interferência denominada ruído speckle, dificultando o reconhecimento de padrões em tais imagens por análise visual e/ou pelo uso de métodos clássicos de processamento automático. Assim, a proposta de técnicas estatísticas especializadas (incluindo modelagem e métodos inferenciais) se torna uma importante etapa no processamento e na análise de imagens SAR. Recentemente, uma versão da distribuição gama generalizada tem sido aplicada com sucesso para descrever dados SAR em formato de intensidade. Esta dissertação apresenta inicialmente uma discussão sobre estimação por máxima verossimilhança (MV) para os parâmetros do modelo gama generalizado adaptado ao contexto de dados SAR. Adicionalmente, derivamos um teorema que permite encontrar analiticamente a matriz informação de Fisher do modelo gama generalizado. Estimadores em forma fechada são propostos (sendo um deles para o número de looks, parâmetro que descreve o efeito do ruído sobre imagens SAR) e um terceiro é definido como solução de uma equação não-linear. Em segundo lugar, propomos um método de estimação melhorado para os parâmetros da distribuição gama generalizada, derivando a expressão do viés de segunda ordem de acordo com a proposta de Cox e Snell [Journal of Royal Statistical Society. Series B (Methodological), vol. 30, no. 2, pp. 248–275, 1968]. Finalmente, objetivando definir contrastes no espaço paramétrico da lei gama generalizada, derivamos seis medidas de divergência (discrepância entre duas medidas de probabilidade) com base na medida de Kullback-Leibler simetrizada e aplicamos os conceitos de testes de hipóteses fundamentados nas propriedades assintóticas da classe de divergências estudada por Salicrú et al. [Journal of Multivariate Analysis, vol. 51, pp. 372–391, 1994]. Três dentre as medidas derivadas quantificam o erro em escolher o modelo gama quando um fenômeno é regido pela distribuição gama generalizada, ou vice-versa. Duas outras medidas calculam o contraste entre dois elementos diferentes a partir da distribuição gama generalizada ou, como caso particular, da distribuição gama. Outra quantifica o erro de escolher o modelo gama generalizado trivariado não-correlacionado quando os dados seguem o modelo Wishart complexo escalonado. Esta última quantidade pode ser utilizada como um detector de redundância para uma região SAR polarimétrica; isto é, um teste de hipótese que informa quando trabalhar com modelos marginais gama generalizado é estatisticamente similar a usar distribuições matriciais. As demais medidas são definidas ou como testes de hipóteses para duas regiões de intensidades SAR ou como medidas de bondade de ajuste entre gama e gama generalizada no mesmo contexto. Para quantificar a eficiência das novas metodologias, estudos de simulação Monte Carlo são realizados bem como vários experimentos com dados SAR reais.
publishDate 2017
dc.date.issued.fl_str_mv 2017-02-17
dc.date.accessioned.fl_str_mv 2018-05-07T22:55:24Z
dc.date.available.fl_str_mv 2018-05-07T22:55:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/24576
dc.identifier.dark.fl_str_mv ark:/64986/0013000005bfk
url https://repositorio.ufpe.br/handle/123456789/24576
identifier_str_mv ark:/64986/0013000005bfk
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Estatistica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/24576/4/DISSERTA%c3%87%c3%83O%20Ramon%20Lima%20dos%20Santos.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/24576/1/DISSERTA%c3%87%c3%83O%20Ramon%20Lima%20dos%20Santos.pdf
https://repositorio.ufpe.br/bitstream/123456789/24576/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/24576/3/DISSERTA%c3%87%c3%83O%20Ramon%20Lima%20dos%20Santos.pdf.txt
bitstream.checksum.fl_str_mv 086867de64b8db3cd2164ba566207176
a40bfdb41592aeeac39753ee63f66232
4b8a02c7f2818eaf00dcf2260dd5eb08
27450c16ae8fb7bfd175836260cfb99c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172728819286016