Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares

Detalhes bibliográficos
Autor(a) principal: Timoteo, Robson Dias Alves
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000005vmg
Texto Completo: https://repositorio.ufpe.br/handle/123456789/13866
Resumo: Nos últimos anos, o tráfego de dados nas redes celulares tem crescido exponencialmente devido ao aumento do número de dispositivos móveis. Neste cenário, os modelos de predição de sinais de rádio frequência podem ser utilizados na otimização da rede e na criação de novos serviços. Os modelos de predição mais utilizados são os modelos do tipo empírico, tais como o Okumura-Hata, Ericsson 9999, COST-231 e ECC-33. No entanto, esses modelos não apresentam bons resultados quando aplicados a ambientes urbanos. Neste trabalho, é proposto um método de predição de sinais de rádio frequência utilizando máquinas de vetores de suporte. Na implementação da máquina de vetor de suporte, os kernels Laplaciano, Gaussiano e Polinomial foram testados. Todas as implementações tiveram desempenho superior aos modelos empíricos tradicionais. Por último, a melhor configuração, obtida com o kernel Laplaciano, foi selecionada e aplicada no contexto de geolocalização de terminais móveis em redes celulares. Os resultados obtidos indicaram um erro médio de localização em torno de uma ordem de grandeza menor do que o erro obtido por meio de técnicas de trilateração de potência.
id UFPE_19947e0e390043d1243ff95a67f5a7cd
oai_identifier_str oai:repositorio.ufpe.br:123456789/13866
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Timoteo, Robson Dias AlvesCunha, Daniel Carvalho da 2015-05-08T14:39:08Z2015-05-08T14:39:08Z2014-11-14https://repositorio.ufpe.br/handle/123456789/13866ark:/64986/0013000005vmgNos últimos anos, o tráfego de dados nas redes celulares tem crescido exponencialmente devido ao aumento do número de dispositivos móveis. Neste cenário, os modelos de predição de sinais de rádio frequência podem ser utilizados na otimização da rede e na criação de novos serviços. Os modelos de predição mais utilizados são os modelos do tipo empírico, tais como o Okumura-Hata, Ericsson 9999, COST-231 e ECC-33. No entanto, esses modelos não apresentam bons resultados quando aplicados a ambientes urbanos. Neste trabalho, é proposto um método de predição de sinais de rádio frequência utilizando máquinas de vetores de suporte. Na implementação da máquina de vetor de suporte, os kernels Laplaciano, Gaussiano e Polinomial foram testados. Todas as implementações tiveram desempenho superior aos modelos empíricos tradicionais. Por último, a melhor configuração, obtida com o kernel Laplaciano, foi selecionada e aplicada no contexto de geolocalização de terminais móveis em redes celulares. Os resultados obtidos indicaram um erro médio de localização em torno de uma ordem de grandeza menor do que o erro obtido por meio de técnicas de trilateração de potência.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRedes sem fioModelos de PropagaçãoAprendizagem de MáquinaMáquina de vetor de suporteRegressão com vetor de suporteRegressão não linearUma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celularesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILMestradoRobson_versao_posbanca_v8.pdf.jpgMestradoRobson_versao_posbanca_v8.pdf.jpgGenerated Thumbnailimage/jpeg1361https://repositorio.ufpe.br/bitstream/123456789/13866/5/MestradoRobson_versao_posbanca_v8.pdf.jpg67f5049328761b6e4d3ef70f0fad71bbMD55ORIGINALMestradoRobson_versao_posbanca_v8.pdfMestradoRobson_versao_posbanca_v8.pdfapplication/pdf2916922https://repositorio.ufpe.br/bitstream/123456789/13866/1/MestradoRobson_versao_posbanca_v8.pdf69519207e681c79847392599f7417664MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/13866/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/13866/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTMestradoRobson_versao_posbanca_v8.pdf.txtMestradoRobson_versao_posbanca_v8.pdf.txtExtracted texttext/plain91162https://repositorio.ufpe.br/bitstream/123456789/13866/4/MestradoRobson_versao_posbanca_v8.pdf.txt52d625ce95cbc0814bbbbb21344c6d04MD54123456789/138662019-10-25 18:39:25.656oai:repositorio.ufpe.br:123456789/13866TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T21:39:25Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares
title Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares
spellingShingle Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares
Timoteo, Robson Dias Alves
Redes sem fio
Modelos de Propagação
Aprendizagem de Máquina
Máquina de vetor de suporte
Regressão com vetor de suporte
Regressão não linear
title_short Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares
title_full Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares
title_fullStr Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares
title_full_unstemmed Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares
title_sort Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares
author Timoteo, Robson Dias Alves
author_facet Timoteo, Robson Dias Alves
author_role author
dc.contributor.author.fl_str_mv Timoteo, Robson Dias Alves
dc.contributor.advisor1.fl_str_mv Cunha, Daniel Carvalho da
contributor_str_mv Cunha, Daniel Carvalho da
dc.subject.por.fl_str_mv Redes sem fio
Modelos de Propagação
Aprendizagem de Máquina
Máquina de vetor de suporte
Regressão com vetor de suporte
Regressão não linear
topic Redes sem fio
Modelos de Propagação
Aprendizagem de Máquina
Máquina de vetor de suporte
Regressão com vetor de suporte
Regressão não linear
description Nos últimos anos, o tráfego de dados nas redes celulares tem crescido exponencialmente devido ao aumento do número de dispositivos móveis. Neste cenário, os modelos de predição de sinais de rádio frequência podem ser utilizados na otimização da rede e na criação de novos serviços. Os modelos de predição mais utilizados são os modelos do tipo empírico, tais como o Okumura-Hata, Ericsson 9999, COST-231 e ECC-33. No entanto, esses modelos não apresentam bons resultados quando aplicados a ambientes urbanos. Neste trabalho, é proposto um método de predição de sinais de rádio frequência utilizando máquinas de vetores de suporte. Na implementação da máquina de vetor de suporte, os kernels Laplaciano, Gaussiano e Polinomial foram testados. Todas as implementações tiveram desempenho superior aos modelos empíricos tradicionais. Por último, a melhor configuração, obtida com o kernel Laplaciano, foi selecionada e aplicada no contexto de geolocalização de terminais móveis em redes celulares. Os resultados obtidos indicaram um erro médio de localização em torno de uma ordem de grandeza menor do que o erro obtido por meio de técnicas de trilateração de potência.
publishDate 2014
dc.date.issued.fl_str_mv 2014-11-14
dc.date.accessioned.fl_str_mv 2015-05-08T14:39:08Z
dc.date.available.fl_str_mv 2015-05-08T14:39:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/13866
dc.identifier.dark.fl_str_mv ark:/64986/0013000005vmg
url https://repositorio.ufpe.br/handle/123456789/13866
identifier_str_mv ark:/64986/0013000005vmg
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/13866/5/MestradoRobson_versao_posbanca_v8.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/13866/1/MestradoRobson_versao_posbanca_v8.pdf
https://repositorio.ufpe.br/bitstream/123456789/13866/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/13866/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/13866/4/MestradoRobson_versao_posbanca_v8.pdf.txt
bitstream.checksum.fl_str_mv 67f5049328761b6e4d3ef70f0fad71bb
69519207e681c79847392599f7417664
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
52d625ce95cbc0814bbbbb21344c6d04
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172733785341952