Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000005vmg |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/13866 |
Resumo: | Nos últimos anos, o tráfego de dados nas redes celulares tem crescido exponencialmente devido ao aumento do número de dispositivos móveis. Neste cenário, os modelos de predição de sinais de rádio frequência podem ser utilizados na otimização da rede e na criação de novos serviços. Os modelos de predição mais utilizados são os modelos do tipo empírico, tais como o Okumura-Hata, Ericsson 9999, COST-231 e ECC-33. No entanto, esses modelos não apresentam bons resultados quando aplicados a ambientes urbanos. Neste trabalho, é proposto um método de predição de sinais de rádio frequência utilizando máquinas de vetores de suporte. Na implementação da máquina de vetor de suporte, os kernels Laplaciano, Gaussiano e Polinomial foram testados. Todas as implementações tiveram desempenho superior aos modelos empíricos tradicionais. Por último, a melhor configuração, obtida com o kernel Laplaciano, foi selecionada e aplicada no contexto de geolocalização de terminais móveis em redes celulares. Os resultados obtidos indicaram um erro médio de localização em torno de uma ordem de grandeza menor do que o erro obtido por meio de técnicas de trilateração de potência. |
id |
UFPE_19947e0e390043d1243ff95a67f5a7cd |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/13866 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Timoteo, Robson Dias AlvesCunha, Daniel Carvalho da 2015-05-08T14:39:08Z2015-05-08T14:39:08Z2014-11-14https://repositorio.ufpe.br/handle/123456789/13866ark:/64986/0013000005vmgNos últimos anos, o tráfego de dados nas redes celulares tem crescido exponencialmente devido ao aumento do número de dispositivos móveis. Neste cenário, os modelos de predição de sinais de rádio frequência podem ser utilizados na otimização da rede e na criação de novos serviços. Os modelos de predição mais utilizados são os modelos do tipo empírico, tais como o Okumura-Hata, Ericsson 9999, COST-231 e ECC-33. No entanto, esses modelos não apresentam bons resultados quando aplicados a ambientes urbanos. Neste trabalho, é proposto um método de predição de sinais de rádio frequência utilizando máquinas de vetores de suporte. Na implementação da máquina de vetor de suporte, os kernels Laplaciano, Gaussiano e Polinomial foram testados. Todas as implementações tiveram desempenho superior aos modelos empíricos tradicionais. Por último, a melhor configuração, obtida com o kernel Laplaciano, foi selecionada e aplicada no contexto de geolocalização de terminais móveis em redes celulares. Os resultados obtidos indicaram um erro médio de localização em torno de uma ordem de grandeza menor do que o erro obtido por meio de técnicas de trilateração de potência.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRedes sem fioModelos de PropagaçãoAprendizagem de MáquinaMáquina de vetor de suporteRegressão com vetor de suporteRegressão não linearUma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celularesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILMestradoRobson_versao_posbanca_v8.pdf.jpgMestradoRobson_versao_posbanca_v8.pdf.jpgGenerated Thumbnailimage/jpeg1361https://repositorio.ufpe.br/bitstream/123456789/13866/5/MestradoRobson_versao_posbanca_v8.pdf.jpg67f5049328761b6e4d3ef70f0fad71bbMD55ORIGINALMestradoRobson_versao_posbanca_v8.pdfMestradoRobson_versao_posbanca_v8.pdfapplication/pdf2916922https://repositorio.ufpe.br/bitstream/123456789/13866/1/MestradoRobson_versao_posbanca_v8.pdf69519207e681c79847392599f7417664MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/13866/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/13866/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTMestradoRobson_versao_posbanca_v8.pdf.txtMestradoRobson_versao_posbanca_v8.pdf.txtExtracted texttext/plain91162https://repositorio.ufpe.br/bitstream/123456789/13866/4/MestradoRobson_versao_posbanca_v8.pdf.txt52d625ce95cbc0814bbbbb21344c6d04MD54123456789/138662019-10-25 18:39:25.656oai:repositorio.ufpe.br:123456789/13866TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T21:39:25Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares |
title |
Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares |
spellingShingle |
Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares Timoteo, Robson Dias Alves Redes sem fio Modelos de Propagação Aprendizagem de Máquina Máquina de vetor de suporte Regressão com vetor de suporte Regressão não linear |
title_short |
Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares |
title_full |
Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares |
title_fullStr |
Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares |
title_full_unstemmed |
Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares |
title_sort |
Uma avaliação do uso de máquinas de vetores de suporte na predição de sinais de rádio frequência em redes celulares |
author |
Timoteo, Robson Dias Alves |
author_facet |
Timoteo, Robson Dias Alves |
author_role |
author |
dc.contributor.author.fl_str_mv |
Timoteo, Robson Dias Alves |
dc.contributor.advisor1.fl_str_mv |
Cunha, Daniel Carvalho da |
contributor_str_mv |
Cunha, Daniel Carvalho da |
dc.subject.por.fl_str_mv |
Redes sem fio Modelos de Propagação Aprendizagem de Máquina Máquina de vetor de suporte Regressão com vetor de suporte Regressão não linear |
topic |
Redes sem fio Modelos de Propagação Aprendizagem de Máquina Máquina de vetor de suporte Regressão com vetor de suporte Regressão não linear |
description |
Nos últimos anos, o tráfego de dados nas redes celulares tem crescido exponencialmente devido ao aumento do número de dispositivos móveis. Neste cenário, os modelos de predição de sinais de rádio frequência podem ser utilizados na otimização da rede e na criação de novos serviços. Os modelos de predição mais utilizados são os modelos do tipo empírico, tais como o Okumura-Hata, Ericsson 9999, COST-231 e ECC-33. No entanto, esses modelos não apresentam bons resultados quando aplicados a ambientes urbanos. Neste trabalho, é proposto um método de predição de sinais de rádio frequência utilizando máquinas de vetores de suporte. Na implementação da máquina de vetor de suporte, os kernels Laplaciano, Gaussiano e Polinomial foram testados. Todas as implementações tiveram desempenho superior aos modelos empíricos tradicionais. Por último, a melhor configuração, obtida com o kernel Laplaciano, foi selecionada e aplicada no contexto de geolocalização de terminais móveis em redes celulares. Os resultados obtidos indicaram um erro médio de localização em torno de uma ordem de grandeza menor do que o erro obtido por meio de técnicas de trilateração de potência. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-11-14 |
dc.date.accessioned.fl_str_mv |
2015-05-08T14:39:08Z |
dc.date.available.fl_str_mv |
2015-05-08T14:39:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/13866 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000005vmg |
url |
https://repositorio.ufpe.br/handle/123456789/13866 |
identifier_str_mv |
ark:/64986/0013000005vmg |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/13866/5/MestradoRobson_versao_posbanca_v8.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/13866/1/MestradoRobson_versao_posbanca_v8.pdf https://repositorio.ufpe.br/bitstream/123456789/13866/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/13866/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/13866/4/MestradoRobson_versao_posbanca_v8.pdf.txt |
bitstream.checksum.fl_str_mv |
67f5049328761b6e4d3ef70f0fad71bb 69519207e681c79847392599f7417664 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 52d625ce95cbc0814bbbbb21344c6d04 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172733785341952 |