Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados

Detalhes bibliográficos
Autor(a) principal: ALMEIDA, Leandro Maciel
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000v9jw
Texto Completo: https://repositorio.ufpe.br/handle/123456789/1709
Resumo: Os Sistemas de Múltiplos Classificadores (também conhecidos como Comitês de Classificadores) podem usar a combinação ou a seleção de hipóteses dos diferentes membros para determinar a hipótese de solução para um dado problema. O método de combinação de hipóteses é mais difundido, sendo possível encontrar diferentes estratégias que aprimoraram o seu desempenho desde a sua concepção. Por outro lado, o método de seleção não possui tantos avanços quanto o método de combinação, embora o seu potencial já tenha sido comprovado em trabalhos da literatura. A construção de sistemas de múltiplos classificadores usando o método de seleção envolve a busca pela estratégia de seleção, que pode ser através do agrupamento dos dados de treinamento e seleção de classificadores especializados nos dados de cada grupo encontrado. Os aprimoramentos realizados no método de seleção de classificadores ocorrem para a definição da estratégia de seleção, normalmente executada por um método manual. Por outro lado, os melhores aprimoramentos do método de combinação de classificadores foram obtidos com o uso de métodos evolucionários (automáticas) para o ajuste de parâametros. Devido à ausência da hibridização com métodos evolucionários para o aprimoramento do método de seleção; às dificuldades inerentes ao trabalho por tentativa e erro em atividades de busca e para avançoo do conhecimento sobre o potencial do método de seleção, faz-se necessária uma exploração do potencial do método de seleção usando métodos de busca evolucionários. Este trabalho explora a construção automática de sistemas de múltiplos classificadores usando o método de seleção. Nesta tese é proposto um novo método, que emprega a Otimização por Exame de Partículas e Evolução Diferencial acoplada ao Algoritmo Genético, utilizado para o aprimoramento da estratégia de seleção de classificadores. A combinação com métodos evolucionários tem o objetivo de explorar o potencial do método de seleção de classificadores, apresentando os benefícios de sua hibridização com métodos de busca evolucionários. A estratégia de seleção de classificadores adotada é composta por uma fase de agrupamento dos dados de treinamento e outra de busca por classificadores especializados para cada grupo de dados encontrado. Os experimentos realizados utilizaram os métodos K-médias e Mapas Auto-Organizáveis na fase de agrupamento e Redes Neurais Artificiais Lineares e Perceptrons de múltiplas camadas na fase de classificação. Algoritmos Evolucionários foram usados (Otimização por Exame de Partículas com ajuste dinâmico de parâmetros e Evolução Diferencial integrada a um Algoritmo Genético) no presente trabalho, com o propósito de otimizar os parâmetros e desempenho das diferentes técnicas empregadas nas fases de agrupamento e classificação. Os resultados experimentais mostraram que o método proposto possui um melhor desempenho quando comparado aos métodos manuais e supera de forma significativa a maioria dos métodos comumente usados para a construção de sistemas de múltiplos classificadores
id UFPE_1b25863f35f71eb1be6b90ac62d25903
oai_identifier_str oai:repositorio.ufpe.br:123456789/1709
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ALMEIDA, Leandro MacielSILVA, Teresinha Gonçalves da2014-06-12T15:51:59Z2014-06-12T15:51:59Z2011-01-31Maciel Almeida, Leandro; Gonçalves da Silva, Teresinha. Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados. 2011. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/1709ark:/64986/001300000v9jwOs Sistemas de Múltiplos Classificadores (também conhecidos como Comitês de Classificadores) podem usar a combinação ou a seleção de hipóteses dos diferentes membros para determinar a hipótese de solução para um dado problema. O método de combinação de hipóteses é mais difundido, sendo possível encontrar diferentes estratégias que aprimoraram o seu desempenho desde a sua concepção. Por outro lado, o método de seleção não possui tantos avanços quanto o método de combinação, embora o seu potencial já tenha sido comprovado em trabalhos da literatura. A construção de sistemas de múltiplos classificadores usando o método de seleção envolve a busca pela estratégia de seleção, que pode ser através do agrupamento dos dados de treinamento e seleção de classificadores especializados nos dados de cada grupo encontrado. Os aprimoramentos realizados no método de seleção de classificadores ocorrem para a definição da estratégia de seleção, normalmente executada por um método manual. Por outro lado, os melhores aprimoramentos do método de combinação de classificadores foram obtidos com o uso de métodos evolucionários (automáticas) para o ajuste de parâametros. Devido à ausência da hibridização com métodos evolucionários para o aprimoramento do método de seleção; às dificuldades inerentes ao trabalho por tentativa e erro em atividades de busca e para avançoo do conhecimento sobre o potencial do método de seleção, faz-se necessária uma exploração do potencial do método de seleção usando métodos de busca evolucionários. Este trabalho explora a construção automática de sistemas de múltiplos classificadores usando o método de seleção. Nesta tese é proposto um novo método, que emprega a Otimização por Exame de Partículas e Evolução Diferencial acoplada ao Algoritmo Genético, utilizado para o aprimoramento da estratégia de seleção de classificadores. A combinação com métodos evolucionários tem o objetivo de explorar o potencial do método de seleção de classificadores, apresentando os benefícios de sua hibridização com métodos de busca evolucionários. A estratégia de seleção de classificadores adotada é composta por uma fase de agrupamento dos dados de treinamento e outra de busca por classificadores especializados para cada grupo de dados encontrado. Os experimentos realizados utilizaram os métodos K-médias e Mapas Auto-Organizáveis na fase de agrupamento e Redes Neurais Artificiais Lineares e Perceptrons de múltiplas camadas na fase de classificação. Algoritmos Evolucionários foram usados (Otimização por Exame de Partículas com ajuste dinâmico de parâmetros e Evolução Diferencial integrada a um Algoritmo Genético) no presente trabalho, com o propósito de otimizar os parâmetros e desempenho das diferentes técnicas empregadas nas fases de agrupamento e classificação. Os resultados experimentais mostraram que o método proposto possui um melhor desempenho quando comparado aos métodos manuais e supera de forma significativa a maioria dos métodos comumente usados para a construção de sistemas de múltiplos classificadoresConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRedes Neurais ArtificiaisComitêsSistemas de Múltiplos ClassificadoresAlgoritmos EvolucionáriosEvolução DiferencialOtimização por Enxame de PartículasConstrução de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo3006_1.pdf.jpgarquivo3006_1.pdf.jpgGenerated Thumbnailimage/jpeg1394https://repositorio.ufpe.br/bitstream/123456789/1709/4/arquivo3006_1.pdf.jpga69f75e418b63b3a88807fe0668d66e6MD54ORIGINALarquivo3006_1.pdfapplication/pdf934448https://repositorio.ufpe.br/bitstream/123456789/1709/1/arquivo3006_1.pdfcfaf4b35b4e186dc40f91523ebe587bfMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/1709/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo3006_1.pdf.txtarquivo3006_1.pdf.txtExtracted texttext/plain238533https://repositorio.ufpe.br/bitstream/123456789/1709/3/arquivo3006_1.pdf.txt8182e39f7456d44c1d32219b5851151eMD53123456789/17092019-10-25 02:57:17.008oai:repositorio.ufpe.br:123456789/1709Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:57:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados
title Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados
spellingShingle Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados
ALMEIDA, Leandro Maciel
Redes Neurais Artificiais
Comitês
Sistemas de Múltiplos Classificadores
Algoritmos Evolucionários
Evolução Diferencial
Otimização por Enxame de Partículas
title_short Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados
title_full Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados
title_fullStr Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados
title_full_unstemmed Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados
title_sort Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados
author ALMEIDA, Leandro Maciel
author_facet ALMEIDA, Leandro Maciel
author_role author
dc.contributor.author.fl_str_mv ALMEIDA, Leandro Maciel
dc.contributor.advisor1.fl_str_mv SILVA, Teresinha Gonçalves da
contributor_str_mv SILVA, Teresinha Gonçalves da
dc.subject.por.fl_str_mv Redes Neurais Artificiais
Comitês
Sistemas de Múltiplos Classificadores
Algoritmos Evolucionários
Evolução Diferencial
Otimização por Enxame de Partículas
topic Redes Neurais Artificiais
Comitês
Sistemas de Múltiplos Classificadores
Algoritmos Evolucionários
Evolução Diferencial
Otimização por Enxame de Partículas
description Os Sistemas de Múltiplos Classificadores (também conhecidos como Comitês de Classificadores) podem usar a combinação ou a seleção de hipóteses dos diferentes membros para determinar a hipótese de solução para um dado problema. O método de combinação de hipóteses é mais difundido, sendo possível encontrar diferentes estratégias que aprimoraram o seu desempenho desde a sua concepção. Por outro lado, o método de seleção não possui tantos avanços quanto o método de combinação, embora o seu potencial já tenha sido comprovado em trabalhos da literatura. A construção de sistemas de múltiplos classificadores usando o método de seleção envolve a busca pela estratégia de seleção, que pode ser através do agrupamento dos dados de treinamento e seleção de classificadores especializados nos dados de cada grupo encontrado. Os aprimoramentos realizados no método de seleção de classificadores ocorrem para a definição da estratégia de seleção, normalmente executada por um método manual. Por outro lado, os melhores aprimoramentos do método de combinação de classificadores foram obtidos com o uso de métodos evolucionários (automáticas) para o ajuste de parâametros. Devido à ausência da hibridização com métodos evolucionários para o aprimoramento do método de seleção; às dificuldades inerentes ao trabalho por tentativa e erro em atividades de busca e para avançoo do conhecimento sobre o potencial do método de seleção, faz-se necessária uma exploração do potencial do método de seleção usando métodos de busca evolucionários. Este trabalho explora a construção automática de sistemas de múltiplos classificadores usando o método de seleção. Nesta tese é proposto um novo método, que emprega a Otimização por Exame de Partículas e Evolução Diferencial acoplada ao Algoritmo Genético, utilizado para o aprimoramento da estratégia de seleção de classificadores. A combinação com métodos evolucionários tem o objetivo de explorar o potencial do método de seleção de classificadores, apresentando os benefícios de sua hibridização com métodos de busca evolucionários. A estratégia de seleção de classificadores adotada é composta por uma fase de agrupamento dos dados de treinamento e outra de busca por classificadores especializados para cada grupo de dados encontrado. Os experimentos realizados utilizaram os métodos K-médias e Mapas Auto-Organizáveis na fase de agrupamento e Redes Neurais Artificiais Lineares e Perceptrons de múltiplas camadas na fase de classificação. Algoritmos Evolucionários foram usados (Otimização por Exame de Partículas com ajuste dinâmico de parâmetros e Evolução Diferencial integrada a um Algoritmo Genético) no presente trabalho, com o propósito de otimizar os parâmetros e desempenho das diferentes técnicas empregadas nas fases de agrupamento e classificação. Os resultados experimentais mostraram que o método proposto possui um melhor desempenho quando comparado aos métodos manuais e supera de forma significativa a maioria dos métodos comumente usados para a construção de sistemas de múltiplos classificadores
publishDate 2011
dc.date.issued.fl_str_mv 2011-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T15:51:59Z
dc.date.available.fl_str_mv 2014-06-12T15:51:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Maciel Almeida, Leandro; Gonçalves da Silva, Teresinha. Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados. 2011. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/1709
dc.identifier.dark.fl_str_mv ark:/64986/001300000v9jw
identifier_str_mv Maciel Almeida, Leandro; Gonçalves da Silva, Teresinha. Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados. 2011. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.
ark:/64986/001300000v9jw
url https://repositorio.ufpe.br/handle/123456789/1709
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/1709/4/arquivo3006_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/1709/1/arquivo3006_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/1709/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/1709/3/arquivo3006_1.pdf.txt
bitstream.checksum.fl_str_mv a69f75e418b63b3a88807fe0668d66e6
cfaf4b35b4e186dc40f91523ebe587bf
8a4605be74aa9ea9d79846c1fba20a33
8182e39f7456d44c1d32219b5851151e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172923580743680