INFLUÊNCIA LOCAL EM MODELOS ESPACIAIS LINEARES COM DISTRIBUIÇÃO DA FAMÍLIA DE CONTORNOS ELÍPTICOS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000pz36 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/10809 |
Resumo: | O estudo de modelos estatísticos que possam levar em consideração as diversas características de fenômenos cada vez mais complexos, são de grande importância. Os modelos espaciais lineares com distribuição da família de contornos elípticos constituem uma alternativa muito atrativa para explicar a estrutura de variabilidade espacial, além de ter a flexibilidade de estender a classe dos erros para outras distribuições além da normal, que podem acomodar melhor as observações atípicas. Apesar disto, os modelos ainda assim podem sofrer efeito de observações influentes, sendo necessário estudos de sensibilidade nesta classe. Esses procedimentos também permitem selecionar modelos dentro da classe de contornos elípticos que se comportam adequadamente de acordo com o tipo de perturbação considerada, o que é fundamental para a modelagem da estrutura de dependência espacial na área de geoestatística, estimando os parâmetros que a definem e que são utilizados na interpolação de valores em locais não amostrados pela técnica de krigagem possibilitando a construção de mapas temáticos. O objetivo deste trabalho foi desenvolver métodos de influência local em modelos espaciais lineares com distribuição da família de contornos elípticos para dois tipos de perturbação na variável resposta, bem como avaliar a influência na matriz de covariância, no preditor linear e a alavanca generalizada. Realizaram-se estudos de simulação e aplicação a dados reais utilizando diferentes distribuições e diferentes modelos na estrutura da matriz de covariância, possibilitando avaliar a importância da metodologia desenvolvida. |
id |
UFPE_1dbe73f724c7bed73f842ce0b843dc12 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/10809 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
BASTIANI, Fernanda deCYSNEIROS, Audrey Helen Mariz de AquinoOPAZO, Miguel Angel Uribe2015-03-05T17:22:18Z2015-03-05T17:22:18Z2012-02-16https://repositorio.ufpe.br/handle/123456789/10809ark:/64986/001300000pz36O estudo de modelos estatísticos que possam levar em consideração as diversas características de fenômenos cada vez mais complexos, são de grande importância. Os modelos espaciais lineares com distribuição da família de contornos elípticos constituem uma alternativa muito atrativa para explicar a estrutura de variabilidade espacial, além de ter a flexibilidade de estender a classe dos erros para outras distribuições além da normal, que podem acomodar melhor as observações atípicas. Apesar disto, os modelos ainda assim podem sofrer efeito de observações influentes, sendo necessário estudos de sensibilidade nesta classe. Esses procedimentos também permitem selecionar modelos dentro da classe de contornos elípticos que se comportam adequadamente de acordo com o tipo de perturbação considerada, o que é fundamental para a modelagem da estrutura de dependência espacial na área de geoestatística, estimando os parâmetros que a definem e que são utilizados na interpolação de valores em locais não amostrados pela técnica de krigagem possibilitando a construção de mapas temáticos. O objetivo deste trabalho foi desenvolver métodos de influência local em modelos espaciais lineares com distribuição da família de contornos elípticos para dois tipos de perturbação na variável resposta, bem como avaliar a influência na matriz de covariância, no preditor linear e a alavanca generalizada. Realizaram-se estudos de simulação e aplicação a dados reais utilizando diferentes distribuições e diferentes modelos na estrutura da matriz de covariância, possibilitando avaliar a importância da metodologia desenvolvida.CAPESporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessmáxima verossimilhançageoestatísticavariabilidade espacialINFLUÊNCIA LOCAL EM MODELOS ESPACIAIS LINEARES COM DISTRIBUIÇÃO DA FAMÍLIA DE CONTORNOS ELÍPTICOSinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILFB.pdf.jpgFB.pdf.jpgGenerated Thumbnailimage/jpeg1260https://repositorio.ufpe.br/bitstream/123456789/10809/5/FB.pdf.jpgf792b910cb8b8cfa1c6adebcb6659032MD55ORIGINALFB.pdfFB.pdfapplication/pdf5134477https://repositorio.ufpe.br/bitstream/123456789/10809/1/FB.pdf3a439cc554aafacf663c00e771f8d25bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/10809/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/10809/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTFB.pdf.txtFB.pdf.txtExtracted texttext/plain279056https://repositorio.ufpe.br/bitstream/123456789/10809/4/FB.pdf.txtd968b1d8c4f8d81edd2bcaf3e9b84581MD54123456789/108092019-10-25 04:29:59.003oai:repositorio.ufpe.br:123456789/10809TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:29:59Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
INFLUÊNCIA LOCAL EM MODELOS ESPACIAIS LINEARES COM DISTRIBUIÇÃO DA FAMÍLIA DE CONTORNOS ELÍPTICOS |
title |
INFLUÊNCIA LOCAL EM MODELOS ESPACIAIS LINEARES COM DISTRIBUIÇÃO DA FAMÍLIA DE CONTORNOS ELÍPTICOS |
spellingShingle |
INFLUÊNCIA LOCAL EM MODELOS ESPACIAIS LINEARES COM DISTRIBUIÇÃO DA FAMÍLIA DE CONTORNOS ELÍPTICOS BASTIANI, Fernanda de máxima verossimilhança geoestatística variabilidade espacial |
title_short |
INFLUÊNCIA LOCAL EM MODELOS ESPACIAIS LINEARES COM DISTRIBUIÇÃO DA FAMÍLIA DE CONTORNOS ELÍPTICOS |
title_full |
INFLUÊNCIA LOCAL EM MODELOS ESPACIAIS LINEARES COM DISTRIBUIÇÃO DA FAMÍLIA DE CONTORNOS ELÍPTICOS |
title_fullStr |
INFLUÊNCIA LOCAL EM MODELOS ESPACIAIS LINEARES COM DISTRIBUIÇÃO DA FAMÍLIA DE CONTORNOS ELÍPTICOS |
title_full_unstemmed |
INFLUÊNCIA LOCAL EM MODELOS ESPACIAIS LINEARES COM DISTRIBUIÇÃO DA FAMÍLIA DE CONTORNOS ELÍPTICOS |
title_sort |
INFLUÊNCIA LOCAL EM MODELOS ESPACIAIS LINEARES COM DISTRIBUIÇÃO DA FAMÍLIA DE CONTORNOS ELÍPTICOS |
author |
BASTIANI, Fernanda de |
author_facet |
BASTIANI, Fernanda de |
author_role |
author |
dc.contributor.author.fl_str_mv |
BASTIANI, Fernanda de |
dc.contributor.advisor1.fl_str_mv |
CYSNEIROS, Audrey Helen Mariz de Aquino |
dc.contributor.advisor-co1.fl_str_mv |
OPAZO, Miguel Angel Uribe |
contributor_str_mv |
CYSNEIROS, Audrey Helen Mariz de Aquino OPAZO, Miguel Angel Uribe |
dc.subject.por.fl_str_mv |
máxima verossimilhança geoestatística variabilidade espacial |
topic |
máxima verossimilhança geoestatística variabilidade espacial |
description |
O estudo de modelos estatísticos que possam levar em consideração as diversas características de fenômenos cada vez mais complexos, são de grande importância. Os modelos espaciais lineares com distribuição da família de contornos elípticos constituem uma alternativa muito atrativa para explicar a estrutura de variabilidade espacial, além de ter a flexibilidade de estender a classe dos erros para outras distribuições além da normal, que podem acomodar melhor as observações atípicas. Apesar disto, os modelos ainda assim podem sofrer efeito de observações influentes, sendo necessário estudos de sensibilidade nesta classe. Esses procedimentos também permitem selecionar modelos dentro da classe de contornos elípticos que se comportam adequadamente de acordo com o tipo de perturbação considerada, o que é fundamental para a modelagem da estrutura de dependência espacial na área de geoestatística, estimando os parâmetros que a definem e que são utilizados na interpolação de valores em locais não amostrados pela técnica de krigagem possibilitando a construção de mapas temáticos. O objetivo deste trabalho foi desenvolver métodos de influência local em modelos espaciais lineares com distribuição da família de contornos elípticos para dois tipos de perturbação na variável resposta, bem como avaliar a influência na matriz de covariância, no preditor linear e a alavanca generalizada. Realizaram-se estudos de simulação e aplicação a dados reais utilizando diferentes distribuições e diferentes modelos na estrutura da matriz de covariância, possibilitando avaliar a importância da metodologia desenvolvida. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-02-16 |
dc.date.accessioned.fl_str_mv |
2015-03-05T17:22:18Z |
dc.date.available.fl_str_mv |
2015-03-05T17:22:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/10809 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000pz36 |
url |
https://repositorio.ufpe.br/handle/123456789/10809 |
identifier_str_mv |
ark:/64986/001300000pz36 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/10809/5/FB.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/10809/1/FB.pdf https://repositorio.ufpe.br/bitstream/123456789/10809/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/10809/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/10809/4/FB.pdf.txt |
bitstream.checksum.fl_str_mv |
f792b910cb8b8cfa1c6adebcb6659032 3a439cc554aafacf663c00e771f8d25b 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 d968b1d8c4f8d81edd2bcaf3e9b84581 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172881180524544 |