Controllability for some equations from fluid mechanics

Detalhes bibliográficos
Autor(a) principal: MACHADO, Jose Lucas Ferreira
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000005m06
Texto Completo: https://repositorio.ufpe.br/handle/123456789/38911
Resumo: In this thesis we present controllability results for some models of fluid mechanics. More precisely, we investigate the existence of controls that drive the solution of the system from an initial state to a prescribed final state in a given positive time. In the first Chapter, the controllability of the Stokes equation with memory is analyzed. This model is a variant of the well-known Stokes equation, with the addition of a non-local term in time building a memory effect in the equation. This model can also be seen as a linearization around zero of an Oldroyd kind viscoelastic fluid system. We prove that the result of null controllability for this equation is not true, even if the control acts over the whole boundary. To this purpose, it is verified that the corresponding observability inequality is not satisfied. We also build explicit initial data such that, for any control, the corresponding solution is different from zero at final time. The second Chapter is dedicated to the controllability of fluids in which thermal effects are important. We prove the exact controllability to the trajectories of a coupled system of the Boussinesq type, for a fluid satisfying boundary conditions of the Navier kind for the velocity and of the Robin kind for the temperature. The control acts on a part of the boundary. First, using a domain extension procedure, we transform the problem into to distributed controllability problem. Then, we prove an approximate global controllability result, following the strategy of Coron et al [J. EUR. Mathematics. Soc., 22 (2020), pp. 1625-1673]. Through linearization and using appropriate Carleman estimates, we conclude with a local control result.
id UFPE_1f88b8ff8376d0b9fffb74c01df27476
oai_identifier_str oai:repositorio.ufpe.br:123456789/38911
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling MACHADO, Jose Lucas Ferreirahttp://lattes.cnpq.br/8472929220077694http://lattes.cnpq.br/5391275961579757SOUZA, Diego Araujo de2020-12-14T18:20:28Z2020-12-14T18:20:28Z2020-09-04MACHADO, José Lucas Ferreira. Controllability for some equations from fluid mechanics. 2020. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38911ark:/64986/0013000005m06In this thesis we present controllability results for some models of fluid mechanics. More precisely, we investigate the existence of controls that drive the solution of the system from an initial state to a prescribed final state in a given positive time. In the first Chapter, the controllability of the Stokes equation with memory is analyzed. This model is a variant of the well-known Stokes equation, with the addition of a non-local term in time building a memory effect in the equation. This model can also be seen as a linearization around zero of an Oldroyd kind viscoelastic fluid system. We prove that the result of null controllability for this equation is not true, even if the control acts over the whole boundary. To this purpose, it is verified that the corresponding observability inequality is not satisfied. We also build explicit initial data such that, for any control, the corresponding solution is different from zero at final time. The second Chapter is dedicated to the controllability of fluids in which thermal effects are important. We prove the exact controllability to the trajectories of a coupled system of the Boussinesq type, for a fluid satisfying boundary conditions of the Navier kind for the velocity and of the Robin kind for the temperature. The control acts on a part of the boundary. First, using a domain extension procedure, we transform the problem into to distributed controllability problem. Then, we prove an approximate global controllability result, following the strategy of Coron et al [J. EUR. Mathematics. Soc., 22 (2020), pp. 1625-1673]. Through linearization and using appropriate Carleman estimates, we conclude with a local control result.CNPqNesta tese apresentamos resultados de controlabilidade para alguns modelos da mecânica dos fluidos. Mais precisamente, investigamos a existência de controles que conduzem a solução do sistema de um estado inicial à um estado final prescrito em um tempo positivo dado. No primeiro Capítulo é analisada a controlabilidade da equação de Stokes com memória. Este modelo é uma variante da conhecida equação de Stokes, com o acréscimo de um termo não local em tempo criando um efeito de memória na equação. Este modelo também pode ser visto como uma linearização entorno a zero de um sistema de fluido viscoelástico do tipo Oldroyd. Provamos que o resultado de controlabilidade nula para esta equação não é verdadeiro, mesmo se o controle atuar sobre toda a fronteira. Para isso, verifica-se que a desigualdade de observabilidade correspondente não é satisfeita. Também construimos um dado inicial explícito tal que, para qualquer controle, a solução correspondente é diferente de zero no tempo final. O segundo Capítulo é dedicado à controlabilidade de fluidos nos quais os efeitos térmicos são importantes. Provamos a controlabilidade exata à trajetórias de um sistema acoplado do tipo Boussinesq, para um fluido satisfazendo condições de fronteira do tipo Navier para o campo velocidade e do tipo Robin para a temperatura. O controle atua sobre uma parte da fronteira. Primeiro, usando um argumento de extensão de domínio passamos a um problema de controle distribuído. Então, provamos um resultado global de controlabilidade aproximada, seguindo a estratégia de Coron et al [J. EUR. Mathematics. Soc., 22 (2020), pp. 1625-1673]. Por meio de linearização e usando estimativas de Carleman apropriadas, concluimos com um resultado de controle local.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnáliseFluidos de Stokes com memóriaSistemas de Boussinesqcontrole de fluidosControllability for some equations from fluid mechanicsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE José Lucas Ferreira Machado.pdfTESE José Lucas Ferreira Machado.pdfapplication/pdf1491199https://repositorio.ufpe.br/bitstream/123456789/38911/1/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf94d042137738850c52f258447c63ee52MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/38911/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/38911/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTTESE José Lucas Ferreira Machado.pdf.txtTESE José Lucas Ferreira Machado.pdf.txtExtracted texttext/plain298647https://repositorio.ufpe.br/bitstream/123456789/38911/4/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf.txt7cf76bfa09f045e9386057d0e86660ceMD54THUMBNAILTESE José Lucas Ferreira Machado.pdf.jpgTESE José Lucas Ferreira Machado.pdf.jpgGenerated Thumbnailimage/jpeg1168https://repositorio.ufpe.br/bitstream/123456789/38911/5/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf.jpg1d518cfdd98507d2aacfe16819d2cf2aMD55123456789/389112021-06-02 18:46:22.193oai:repositorio.ufpe.br:123456789/38911TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212021-06-02T21:46:22Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Controllability for some equations from fluid mechanics
title Controllability for some equations from fluid mechanics
spellingShingle Controllability for some equations from fluid mechanics
MACHADO, Jose Lucas Ferreira
Análise
Fluidos de Stokes com memória
Sistemas de Boussinesq
controle de fluidos
title_short Controllability for some equations from fluid mechanics
title_full Controllability for some equations from fluid mechanics
title_fullStr Controllability for some equations from fluid mechanics
title_full_unstemmed Controllability for some equations from fluid mechanics
title_sort Controllability for some equations from fluid mechanics
author MACHADO, Jose Lucas Ferreira
author_facet MACHADO, Jose Lucas Ferreira
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8472929220077694
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5391275961579757
dc.contributor.author.fl_str_mv MACHADO, Jose Lucas Ferreira
dc.contributor.advisor1.fl_str_mv SOUZA, Diego Araujo de
contributor_str_mv SOUZA, Diego Araujo de
dc.subject.por.fl_str_mv Análise
Fluidos de Stokes com memória
Sistemas de Boussinesq
controle de fluidos
topic Análise
Fluidos de Stokes com memória
Sistemas de Boussinesq
controle de fluidos
description In this thesis we present controllability results for some models of fluid mechanics. More precisely, we investigate the existence of controls that drive the solution of the system from an initial state to a prescribed final state in a given positive time. In the first Chapter, the controllability of the Stokes equation with memory is analyzed. This model is a variant of the well-known Stokes equation, with the addition of a non-local term in time building a memory effect in the equation. This model can also be seen as a linearization around zero of an Oldroyd kind viscoelastic fluid system. We prove that the result of null controllability for this equation is not true, even if the control acts over the whole boundary. To this purpose, it is verified that the corresponding observability inequality is not satisfied. We also build explicit initial data such that, for any control, the corresponding solution is different from zero at final time. The second Chapter is dedicated to the controllability of fluids in which thermal effects are important. We prove the exact controllability to the trajectories of a coupled system of the Boussinesq type, for a fluid satisfying boundary conditions of the Navier kind for the velocity and of the Robin kind for the temperature. The control acts on a part of the boundary. First, using a domain extension procedure, we transform the problem into to distributed controllability problem. Then, we prove an approximate global controllability result, following the strategy of Coron et al [J. EUR. Mathematics. Soc., 22 (2020), pp. 1625-1673]. Through linearization and using appropriate Carleman estimates, we conclude with a local control result.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-12-14T18:20:28Z
dc.date.available.fl_str_mv 2020-12-14T18:20:28Z
dc.date.issued.fl_str_mv 2020-09-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MACHADO, José Lucas Ferreira. Controllability for some equations from fluid mechanics. 2020. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2020.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/38911
dc.identifier.dark.fl_str_mv ark:/64986/0013000005m06
identifier_str_mv MACHADO, José Lucas Ferreira. Controllability for some equations from fluid mechanics. 2020. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2020.
ark:/64986/0013000005m06
url https://repositorio.ufpe.br/handle/123456789/38911
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Matematica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/38911/1/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf
https://repositorio.ufpe.br/bitstream/123456789/38911/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/38911/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/38911/4/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/38911/5/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf.jpg
bitstream.checksum.fl_str_mv 94d042137738850c52f258447c63ee52
e39d27027a6cc9cb039ad269a5db8e34
bd573a5ca8288eb7272482765f819534
7cf76bfa09f045e9386057d0e86660ce
1d518cfdd98507d2aacfe16819d2cf2a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172731258273792