Controllability for some equations from fluid mechanics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000005m06 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/38911 |
Resumo: | In this thesis we present controllability results for some models of fluid mechanics. More precisely, we investigate the existence of controls that drive the solution of the system from an initial state to a prescribed final state in a given positive time. In the first Chapter, the controllability of the Stokes equation with memory is analyzed. This model is a variant of the well-known Stokes equation, with the addition of a non-local term in time building a memory effect in the equation. This model can also be seen as a linearization around zero of an Oldroyd kind viscoelastic fluid system. We prove that the result of null controllability for this equation is not true, even if the control acts over the whole boundary. To this purpose, it is verified that the corresponding observability inequality is not satisfied. We also build explicit initial data such that, for any control, the corresponding solution is different from zero at final time. The second Chapter is dedicated to the controllability of fluids in which thermal effects are important. We prove the exact controllability to the trajectories of a coupled system of the Boussinesq type, for a fluid satisfying boundary conditions of the Navier kind for the velocity and of the Robin kind for the temperature. The control acts on a part of the boundary. First, using a domain extension procedure, we transform the problem into to distributed controllability problem. Then, we prove an approximate global controllability result, following the strategy of Coron et al [J. EUR. Mathematics. Soc., 22 (2020), pp. 1625-1673]. Through linearization and using appropriate Carleman estimates, we conclude with a local control result. |
id |
UFPE_1f88b8ff8376d0b9fffb74c01df27476 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/38911 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
MACHADO, Jose Lucas Ferreirahttp://lattes.cnpq.br/8472929220077694http://lattes.cnpq.br/5391275961579757SOUZA, Diego Araujo de2020-12-14T18:20:28Z2020-12-14T18:20:28Z2020-09-04MACHADO, José Lucas Ferreira. Controllability for some equations from fluid mechanics. 2020. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38911ark:/64986/0013000005m06In this thesis we present controllability results for some models of fluid mechanics. More precisely, we investigate the existence of controls that drive the solution of the system from an initial state to a prescribed final state in a given positive time. In the first Chapter, the controllability of the Stokes equation with memory is analyzed. This model is a variant of the well-known Stokes equation, with the addition of a non-local term in time building a memory effect in the equation. This model can also be seen as a linearization around zero of an Oldroyd kind viscoelastic fluid system. We prove that the result of null controllability for this equation is not true, even if the control acts over the whole boundary. To this purpose, it is verified that the corresponding observability inequality is not satisfied. We also build explicit initial data such that, for any control, the corresponding solution is different from zero at final time. The second Chapter is dedicated to the controllability of fluids in which thermal effects are important. We prove the exact controllability to the trajectories of a coupled system of the Boussinesq type, for a fluid satisfying boundary conditions of the Navier kind for the velocity and of the Robin kind for the temperature. The control acts on a part of the boundary. First, using a domain extension procedure, we transform the problem into to distributed controllability problem. Then, we prove an approximate global controllability result, following the strategy of Coron et al [J. EUR. Mathematics. Soc., 22 (2020), pp. 1625-1673]. Through linearization and using appropriate Carleman estimates, we conclude with a local control result.CNPqNesta tese apresentamos resultados de controlabilidade para alguns modelos da mecânica dos fluidos. Mais precisamente, investigamos a existência de controles que conduzem a solução do sistema de um estado inicial à um estado final prescrito em um tempo positivo dado. No primeiro Capítulo é analisada a controlabilidade da equação de Stokes com memória. Este modelo é uma variante da conhecida equação de Stokes, com o acréscimo de um termo não local em tempo criando um efeito de memória na equação. Este modelo também pode ser visto como uma linearização entorno a zero de um sistema de fluido viscoelástico do tipo Oldroyd. Provamos que o resultado de controlabilidade nula para esta equação não é verdadeiro, mesmo se o controle atuar sobre toda a fronteira. Para isso, verifica-se que a desigualdade de observabilidade correspondente não é satisfeita. Também construimos um dado inicial explícito tal que, para qualquer controle, a solução correspondente é diferente de zero no tempo final. O segundo Capítulo é dedicado à controlabilidade de fluidos nos quais os efeitos térmicos são importantes. Provamos a controlabilidade exata à trajetórias de um sistema acoplado do tipo Boussinesq, para um fluido satisfazendo condições de fronteira do tipo Navier para o campo velocidade e do tipo Robin para a temperatura. O controle atua sobre uma parte da fronteira. Primeiro, usando um argumento de extensão de domínio passamos a um problema de controle distribuído. Então, provamos um resultado global de controlabilidade aproximada, seguindo a estratégia de Coron et al [J. EUR. Mathematics. Soc., 22 (2020), pp. 1625-1673]. Por meio de linearização e usando estimativas de Carleman apropriadas, concluimos com um resultado de controle local.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnáliseFluidos de Stokes com memóriaSistemas de Boussinesqcontrole de fluidosControllability for some equations from fluid mechanicsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE José Lucas Ferreira Machado.pdfTESE José Lucas Ferreira Machado.pdfapplication/pdf1491199https://repositorio.ufpe.br/bitstream/123456789/38911/1/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf94d042137738850c52f258447c63ee52MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/38911/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/38911/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTTESE José Lucas Ferreira Machado.pdf.txtTESE José Lucas Ferreira Machado.pdf.txtExtracted texttext/plain298647https://repositorio.ufpe.br/bitstream/123456789/38911/4/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf.txt7cf76bfa09f045e9386057d0e86660ceMD54THUMBNAILTESE José Lucas Ferreira Machado.pdf.jpgTESE José Lucas Ferreira Machado.pdf.jpgGenerated Thumbnailimage/jpeg1168https://repositorio.ufpe.br/bitstream/123456789/38911/5/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf.jpg1d518cfdd98507d2aacfe16819d2cf2aMD55123456789/389112021-06-02 18:46:22.193oai:repositorio.ufpe.br:123456789/38911TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212021-06-02T21:46:22Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Controllability for some equations from fluid mechanics |
title |
Controllability for some equations from fluid mechanics |
spellingShingle |
Controllability for some equations from fluid mechanics MACHADO, Jose Lucas Ferreira Análise Fluidos de Stokes com memória Sistemas de Boussinesq controle de fluidos |
title_short |
Controllability for some equations from fluid mechanics |
title_full |
Controllability for some equations from fluid mechanics |
title_fullStr |
Controllability for some equations from fluid mechanics |
title_full_unstemmed |
Controllability for some equations from fluid mechanics |
title_sort |
Controllability for some equations from fluid mechanics |
author |
MACHADO, Jose Lucas Ferreira |
author_facet |
MACHADO, Jose Lucas Ferreira |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8472929220077694 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5391275961579757 |
dc.contributor.author.fl_str_mv |
MACHADO, Jose Lucas Ferreira |
dc.contributor.advisor1.fl_str_mv |
SOUZA, Diego Araujo de |
contributor_str_mv |
SOUZA, Diego Araujo de |
dc.subject.por.fl_str_mv |
Análise Fluidos de Stokes com memória Sistemas de Boussinesq controle de fluidos |
topic |
Análise Fluidos de Stokes com memória Sistemas de Boussinesq controle de fluidos |
description |
In this thesis we present controllability results for some models of fluid mechanics. More precisely, we investigate the existence of controls that drive the solution of the system from an initial state to a prescribed final state in a given positive time. In the first Chapter, the controllability of the Stokes equation with memory is analyzed. This model is a variant of the well-known Stokes equation, with the addition of a non-local term in time building a memory effect in the equation. This model can also be seen as a linearization around zero of an Oldroyd kind viscoelastic fluid system. We prove that the result of null controllability for this equation is not true, even if the control acts over the whole boundary. To this purpose, it is verified that the corresponding observability inequality is not satisfied. We also build explicit initial data such that, for any control, the corresponding solution is different from zero at final time. The second Chapter is dedicated to the controllability of fluids in which thermal effects are important. We prove the exact controllability to the trajectories of a coupled system of the Boussinesq type, for a fluid satisfying boundary conditions of the Navier kind for the velocity and of the Robin kind for the temperature. The control acts on a part of the boundary. First, using a domain extension procedure, we transform the problem into to distributed controllability problem. Then, we prove an approximate global controllability result, following the strategy of Coron et al [J. EUR. Mathematics. Soc., 22 (2020), pp. 1625-1673]. Through linearization and using appropriate Carleman estimates, we conclude with a local control result. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-12-14T18:20:28Z |
dc.date.available.fl_str_mv |
2020-12-14T18:20:28Z |
dc.date.issued.fl_str_mv |
2020-09-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MACHADO, José Lucas Ferreira. Controllability for some equations from fluid mechanics. 2020. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2020. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/38911 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000005m06 |
identifier_str_mv |
MACHADO, José Lucas Ferreira. Controllability for some equations from fluid mechanics. 2020. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2020. ark:/64986/0013000005m06 |
url |
https://repositorio.ufpe.br/handle/123456789/38911 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/38911/1/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf https://repositorio.ufpe.br/bitstream/123456789/38911/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/38911/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/38911/4/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/38911/5/TESE%20Jos%c3%a9%20Lucas%20Ferreira%20Machado.pdf.jpg |
bitstream.checksum.fl_str_mv |
94d042137738850c52f258447c63ee52 e39d27027a6cc9cb039ad269a5db8e34 bd573a5ca8288eb7272482765f819534 7cf76bfa09f045e9386057d0e86660ce 1d518cfdd98507d2aacfe16819d2cf2a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172731258273792 |