Ferromagnetic Resonance by micromagnetic simulation in hollow pillars

Detalhes bibliográficos
Autor(a) principal: SILVA, Jean Felipe Oliveira da
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
Texto Completo: https://repositorio.ufpe.br/handle/123456789/44426
Resumo: In this work, using computational simulation, unitary structures of nanopillars and nanopil- lar arrangements were analyzed. The study was carried out using The Object Oriented Micro- Magnetic Framework The Object Oriented MicroMagnetic Framework (OOMMF) simulator using Finite Difference Method (FDM) to simulate Ferromagnetic Resonance (FMR) in the studied systems. The square nickel nanopillars have lateral length D = 30 nm and height L = 120 nm. The size of the internal cavity in this system was also varied, with values of d = 0 nm (solid pillar), d = 10 nm and d = 20 nm. To study the column arrangements, they were arranged in a 3x3 matrix. In addition to inheriting the cavity variation characteristics, each column had an initial distance of a − D = 5 nm between its neighbors. This distance was changed to a− D = 10 nm, a− D = 20 nm and a− D = 50 nm to analyze the influence on the dipole interactions of this system. The Zeeman interaction was considered when an external magnetic field was placed on the surface. Due to the geometry of this system, the anisotropy field HA was studied for each nanopillar system. The theoretical model for ad- justing our parameters and analyzing the anisotropy field was the Kittel equations. Main and secondary peak frequencies were studied for unitary columns to obtain information about the anisotropy field of the sample. For the primary peaks, compared with works in the literature, it was noticed that the ferromagnetic resonance response came from the sides of the structure on the z-axis, in the secondary peaks, the values of HA for the perpendicular field have large divergences according to the model. It was also possible to observe that the adjustment for the anisotropy field improves the greater the value of d. Due to the analyzes made for unitary columns, the secondary peaks for column arrangements were not analyzed. For primary peaks with the applied perpendicular field, it was observed that the Kittel equation for FMR does not correctly adjust the values for HA. In the analysis of parallel fields, we tried to analyze the influence of neighboring columns on the value of HA. A model was used considering the system’s packaging factor. In this model, it was compared when considering the cavity in the center of the columns and assuming them to be solid columns. From the comparison with results in the literature, the packing factor that best described the system was the first, as more dipole effects are added to the system.
id UFPE_1fdf4a0f88286db7811af1678849adfa
oai_identifier_str oai:repositorio.ufpe.br:123456789/44426
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SILVA, Jean Felipe Oliveira dahttp://lattes.cnpq.br/3352635103808362http://lattes.cnpq.br/3590036930228473PADRÓN HERNÁNDEZ, Eduardo2022-05-10T17:57:09Z2022-05-10T17:57:09Z2022-02-22SILVA, Jean Felipe Oliveira da. Ferromagnetic Resonance by micromagnetic simulation in hollow pillars. 2022. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/44426In this work, using computational simulation, unitary structures of nanopillars and nanopil- lar arrangements were analyzed. The study was carried out using The Object Oriented Micro- Magnetic Framework The Object Oriented MicroMagnetic Framework (OOMMF) simulator using Finite Difference Method (FDM) to simulate Ferromagnetic Resonance (FMR) in the studied systems. The square nickel nanopillars have lateral length D = 30 nm and height L = 120 nm. The size of the internal cavity in this system was also varied, with values of d = 0 nm (solid pillar), d = 10 nm and d = 20 nm. To study the column arrangements, they were arranged in a 3x3 matrix. In addition to inheriting the cavity variation characteristics, each column had an initial distance of a − D = 5 nm between its neighbors. This distance was changed to a− D = 10 nm, a− D = 20 nm and a− D = 50 nm to analyze the influence on the dipole interactions of this system. The Zeeman interaction was considered when an external magnetic field was placed on the surface. Due to the geometry of this system, the anisotropy field HA was studied for each nanopillar system. The theoretical model for ad- justing our parameters and analyzing the anisotropy field was the Kittel equations. Main and secondary peak frequencies were studied for unitary columns to obtain information about the anisotropy field of the sample. For the primary peaks, compared with works in the literature, it was noticed that the ferromagnetic resonance response came from the sides of the structure on the z-axis, in the secondary peaks, the values of HA for the perpendicular field have large divergences according to the model. It was also possible to observe that the adjustment for the anisotropy field improves the greater the value of d. Due to the analyzes made for unitary columns, the secondary peaks for column arrangements were not analyzed. For primary peaks with the applied perpendicular field, it was observed that the Kittel equation for FMR does not correctly adjust the values for HA. In the analysis of parallel fields, we tried to analyze the influence of neighboring columns on the value of HA. A model was used considering the system’s packaging factor. In this model, it was compared when considering the cavity in the center of the columns and assuming them to be solid columns. From the comparison with results in the literature, the packing factor that best described the system was the first, as more dipole effects are added to the system.CNPqNeste trabalho foi analisado, por meio de simulação computacional, estruturas unitárias de nanopilar e arranjos de nanopilares. O estudo foi feito utilizando o simulador OOMMF utilizando o Método de Diferenças Finitas (MDF) para simular Ressonância Ferromagnética nos sistemas estudados. Os nanopilares quadrados de Níquel possuem comprimento lateral D = 30 nm e altura L = 120 nm. Também foi variado o tamanho da cavidade interna neste sistema, com valores de d = 0 nm (pilar sólido), d = 10 nm e d = 20 nm. Para o estudo dos arranjos de pilares, estes foram dispostos em uma matriz 3x3. Além de herdar as características de variação da cavidade, cada pilar possuía uma distância inicial de a − D = 5 nm entre seus vizinhos. Esta distância foi alterada para a−D = 10 nm, a−D = 20 nm e a−D = 50 nm para analisar a influência nas interações dipolares deste sistema. Foi considerado a interação Zeeman ao incidir um campo magnético externo na superfície. Devido a geometria deste sistema, o campo de anisotropia HA foi estudado para cada sistema de nanopilar. O modelo teórico para ajuste dos nossos parâmetros e análise do campo de anisotropia foram as equações de Kittel. Foram estudados para os pilares unitários as frequências de pico principal e secundário, a fim de obter informações sobre o campo de anisotropia da amostra. Para os picos primários, comparando com trabalhos da literatura notou-se que a resposta de ressonância ferromagnética vinha das laterais da estrutura no eixo z, nos picos secundários, os valores de HA para campo perpendicular possuem grandes divergências de acordo com o modelo. Também foi possível observar que o ajuste para o campo de anisotropia melhora quão maior for d. Devido as análises feitas para pilares unitários, não foram analisados os picos secundários para arranjos de pilares. Para os picos primários com campo perpendicular aplicado, foi observado que as equações de Kittel para ressonância ferromagnética não ajustam corretamente os valores de HA. Na análise dos campos paralelos, procurou-se analisar a influência dos pilares vizinhos no valor de HA. Utilizou-se um modelo considerando o fator de empacotamento do sistema. Neste modelo, foi comparado quando considera-se a cavidade no centro dos pilares e supondo-os pilares sólidos. A partir de comparação com resultados na literatura, o fator de empacotamento que melhor descreveu o sistema foi o primeiro, pois é adicionado mais efeitos dipolares ao sistema.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFísica da matéria condensada.Ressonância ferromagnéticaSimulação ferromagnéticaFerromagnetismoCampo de anisotropiaFerromagnetic Resonance by micromagnetic simulation in hollow pillarsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/44426/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALDISSERTAÇÃO Jean Felipe Oliveira da Silva.pdfDISSERTAÇÃO Jean Felipe Oliveira da Silva.pdfapplication/pdf2050087https://repositorio.ufpe.br/bitstream/123456789/44426/1/DISSERTA%c3%87%c3%83O%20Jean%20Felipe%20Oliveira%20da%20Silva.pdff47de818863c29ca0bc59b60df3ba238MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/44426/3/license.txt6928b9260b07fb2755249a5ca9903395MD53TEXTDISSERTAÇÃO Jean Felipe Oliveira da Silva.pdf.txtDISSERTAÇÃO Jean Felipe Oliveira da Silva.pdf.txtExtracted texttext/plain122834https://repositorio.ufpe.br/bitstream/123456789/44426/4/DISSERTA%c3%87%c3%83O%20Jean%20Felipe%20Oliveira%20da%20Silva.pdf.txt1f8bcb73bdc1ca220a1748a94147e442MD54THUMBNAILDISSERTAÇÃO Jean Felipe Oliveira da Silva.pdf.jpgDISSERTAÇÃO Jean Felipe Oliveira da Silva.pdf.jpgGenerated Thumbnailimage/jpeg1196https://repositorio.ufpe.br/bitstream/123456789/44426/5/DISSERTA%c3%87%c3%83O%20Jean%20Felipe%20Oliveira%20da%20Silva.pdf.jpg6ed698a824c8fe56940c84f47f7ca752MD55123456789/444262022-05-11 02:11:54.481oai:repositorio.ufpe.br:123456789/44426VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-05-11T05:11:54Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Ferromagnetic Resonance by micromagnetic simulation in hollow pillars
title Ferromagnetic Resonance by micromagnetic simulation in hollow pillars
spellingShingle Ferromagnetic Resonance by micromagnetic simulation in hollow pillars
SILVA, Jean Felipe Oliveira da
Física da matéria condensada.
Ressonância ferromagnética
Simulação ferromagnética
Ferromagnetismo
Campo de anisotropia
title_short Ferromagnetic Resonance by micromagnetic simulation in hollow pillars
title_full Ferromagnetic Resonance by micromagnetic simulation in hollow pillars
title_fullStr Ferromagnetic Resonance by micromagnetic simulation in hollow pillars
title_full_unstemmed Ferromagnetic Resonance by micromagnetic simulation in hollow pillars
title_sort Ferromagnetic Resonance by micromagnetic simulation in hollow pillars
author SILVA, Jean Felipe Oliveira da
author_facet SILVA, Jean Felipe Oliveira da
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3352635103808362
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3590036930228473
dc.contributor.author.fl_str_mv SILVA, Jean Felipe Oliveira da
dc.contributor.advisor1.fl_str_mv PADRÓN HERNÁNDEZ, Eduardo
contributor_str_mv PADRÓN HERNÁNDEZ, Eduardo
dc.subject.por.fl_str_mv Física da matéria condensada.
Ressonância ferromagnética
Simulação ferromagnética
Ferromagnetismo
Campo de anisotropia
topic Física da matéria condensada.
Ressonância ferromagnética
Simulação ferromagnética
Ferromagnetismo
Campo de anisotropia
description In this work, using computational simulation, unitary structures of nanopillars and nanopil- lar arrangements were analyzed. The study was carried out using The Object Oriented Micro- Magnetic Framework The Object Oriented MicroMagnetic Framework (OOMMF) simulator using Finite Difference Method (FDM) to simulate Ferromagnetic Resonance (FMR) in the studied systems. The square nickel nanopillars have lateral length D = 30 nm and height L = 120 nm. The size of the internal cavity in this system was also varied, with values of d = 0 nm (solid pillar), d = 10 nm and d = 20 nm. To study the column arrangements, they were arranged in a 3x3 matrix. In addition to inheriting the cavity variation characteristics, each column had an initial distance of a − D = 5 nm between its neighbors. This distance was changed to a− D = 10 nm, a− D = 20 nm and a− D = 50 nm to analyze the influence on the dipole interactions of this system. The Zeeman interaction was considered when an external magnetic field was placed on the surface. Due to the geometry of this system, the anisotropy field HA was studied for each nanopillar system. The theoretical model for ad- justing our parameters and analyzing the anisotropy field was the Kittel equations. Main and secondary peak frequencies were studied for unitary columns to obtain information about the anisotropy field of the sample. For the primary peaks, compared with works in the literature, it was noticed that the ferromagnetic resonance response came from the sides of the structure on the z-axis, in the secondary peaks, the values of HA for the perpendicular field have large divergences according to the model. It was also possible to observe that the adjustment for the anisotropy field improves the greater the value of d. Due to the analyzes made for unitary columns, the secondary peaks for column arrangements were not analyzed. For primary peaks with the applied perpendicular field, it was observed that the Kittel equation for FMR does not correctly adjust the values for HA. In the analysis of parallel fields, we tried to analyze the influence of neighboring columns on the value of HA. A model was used considering the system’s packaging factor. In this model, it was compared when considering the cavity in the center of the columns and assuming them to be solid columns. From the comparison with results in the literature, the packing factor that best described the system was the first, as more dipole effects are added to the system.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-05-10T17:57:09Z
dc.date.available.fl_str_mv 2022-05-10T17:57:09Z
dc.date.issued.fl_str_mv 2022-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Jean Felipe Oliveira da. Ferromagnetic Resonance by micromagnetic simulation in hollow pillars. 2022. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/44426
identifier_str_mv SILVA, Jean Felipe Oliveira da. Ferromagnetic Resonance by micromagnetic simulation in hollow pillars. 2022. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2022.
url https://repositorio.ufpe.br/handle/123456789/44426
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Fisica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/44426/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/44426/1/DISSERTA%c3%87%c3%83O%20Jean%20Felipe%20Oliveira%20da%20Silva.pdf
https://repositorio.ufpe.br/bitstream/123456789/44426/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/44426/4/DISSERTA%c3%87%c3%83O%20Jean%20Felipe%20Oliveira%20da%20Silva.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/44426/5/DISSERTA%c3%87%c3%83O%20Jean%20Felipe%20Oliveira%20da%20Silva.pdf.jpg
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
f47de818863c29ca0bc59b60df3ba238
6928b9260b07fb2755249a5ca9903395
1f8bcb73bdc1ca220a1748a94147e442
6ed698a824c8fe56940c84f47f7ca752
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1802310902153740288