Seleção de características para problemas de classificação de documentos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000g0wr |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2459 |
Resumo: | Os sistemas de classificação de documentos servem, de modo geral, para facilitar o acesso do usuário a uma base de documentos. Esses sistemas podem ser utilizados para detectar spams; recomendar notícias de uma revista, artigos científicos ou produtos de uma loja virtual; refinar buscas e direcioná-las por assunto. Uma das maiores dificuldades na classificação de documentos é sua alta dimensionalidade. A abordagem bag of words, utilizada para extrair as características e obter os vetores que representam os documentos, gera dezenas de milhares de características. Vetores dessa dimensão demandam elevado custo computacional, além de possuir informações irrelevantes e redundantes. Técnicas de seleção de características reduzem a dimensionalidade da representação, de modo a acelerar o processamento do sistema e a facilitar a classificação. Entretanto, a seleção de características utilizada em problemas de classificação de documentos requer um parâmetro m que define quantas características serão selecionadas. Encontrar um bom valor para m é um procedimento complicado e custoso. A idéia introduzida neste trabalho visa remover a necessidade do parâmetro m e garantir que as características selecionadas cubram todos os documentos do conjunto de treinamento. Para atingir esse objetivo, o algoritmo proposto itera sobre os documentos do conjunto de treinamento e, para cada documento, escolhe a característica mais relevante. Se a característica escolhida já tiver sido selecionada, ela é ignorada, caso contrário, ela é selecionada. Deste modo, a quantidade de características é conhecida no final da execução do algoritmo, sem a necessidade de declarar um valor prévio para m. Os métodos propostos seguem essa ideia inicial com certas variações: inserção do parâmetro f para selecionar várias características por documento; utilização de informação local das classes; restrição de quais documentos serão usados no processo de seleção. Os novos algoritmos são comparados com um método clássico (Variable Ranking). Nos experimentos, foram usadas três bases de dados e cinco funções de avaliação de característica. Os resultados mostram que os métodos propostos conseguem melhores taxas de acerto |
id |
UFPE_2444951aa694b03cf46949ba24a67708 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2459 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Hugo Wanderley Pinheiro, RobertoDarmiton da Cunha Cavalcanti, George 2014-06-12T15:58:24Z2014-06-12T15:58:24Z2011-01-31Hugo Wanderley Pinheiro, Roberto; Darmiton da Cunha Cavalcanti, George. Seleção de características para problemas de classificação de documentos. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/2459ark:/64986/001300000g0wrOs sistemas de classificação de documentos servem, de modo geral, para facilitar o acesso do usuário a uma base de documentos. Esses sistemas podem ser utilizados para detectar spams; recomendar notícias de uma revista, artigos científicos ou produtos de uma loja virtual; refinar buscas e direcioná-las por assunto. Uma das maiores dificuldades na classificação de documentos é sua alta dimensionalidade. A abordagem bag of words, utilizada para extrair as características e obter os vetores que representam os documentos, gera dezenas de milhares de características. Vetores dessa dimensão demandam elevado custo computacional, além de possuir informações irrelevantes e redundantes. Técnicas de seleção de características reduzem a dimensionalidade da representação, de modo a acelerar o processamento do sistema e a facilitar a classificação. Entretanto, a seleção de características utilizada em problemas de classificação de documentos requer um parâmetro m que define quantas características serão selecionadas. Encontrar um bom valor para m é um procedimento complicado e custoso. A idéia introduzida neste trabalho visa remover a necessidade do parâmetro m e garantir que as características selecionadas cubram todos os documentos do conjunto de treinamento. Para atingir esse objetivo, o algoritmo proposto itera sobre os documentos do conjunto de treinamento e, para cada documento, escolhe a característica mais relevante. Se a característica escolhida já tiver sido selecionada, ela é ignorada, caso contrário, ela é selecionada. Deste modo, a quantidade de características é conhecida no final da execução do algoritmo, sem a necessidade de declarar um valor prévio para m. Os métodos propostos seguem essa ideia inicial com certas variações: inserção do parâmetro f para selecionar várias características por documento; utilização de informação local das classes; restrição de quais documentos serão usados no processo de seleção. Os novos algoritmos são comparados com um método clássico (Variable Ranking). Nos experimentos, foram usadas três bases de dados e cinco funções de avaliação de característica. Os resultados mostram que os métodos propostos conseguem melhores taxas de acertoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessClassificação de DocumentosSeleção de CaracterísticasK vizinhos mais próximosNaïve BayesRecuperação de InformaçãoSeleção de características para problemas de classificação de documentosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALarquivo4097_1.pdfapplication/pdf888475https://repositorio.ufpe.br/bitstream/123456789/2459/1/arquivo4097_1.pdf0cb3006c0211d4a3f7598e6efed04914MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2459/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo4097_1.pdf.txtarquivo4097_1.pdf.txtExtracted texttext/plain178430https://repositorio.ufpe.br/bitstream/123456789/2459/3/arquivo4097_1.pdf.txte0208f683f445814d59b868ccf4192faMD53THUMBNAILarquivo4097_1.pdf.jpgarquivo4097_1.pdf.jpgGenerated Thumbnailimage/jpeg1321https://repositorio.ufpe.br/bitstream/123456789/2459/4/arquivo4097_1.pdf.jpgb56029ec18c0c3efc46f98bfb7971d98MD54123456789/24592019-10-25 02:56:31.608oai:repositorio.ufpe.br:123456789/2459Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:56:31Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Seleção de características para problemas de classificação de documentos |
title |
Seleção de características para problemas de classificação de documentos |
spellingShingle |
Seleção de características para problemas de classificação de documentos Hugo Wanderley Pinheiro, Roberto Classificação de Documentos Seleção de Características K vizinhos mais próximos Naïve Bayes Recuperação de Informação |
title_short |
Seleção de características para problemas de classificação de documentos |
title_full |
Seleção de características para problemas de classificação de documentos |
title_fullStr |
Seleção de características para problemas de classificação de documentos |
title_full_unstemmed |
Seleção de características para problemas de classificação de documentos |
title_sort |
Seleção de características para problemas de classificação de documentos |
author |
Hugo Wanderley Pinheiro, Roberto |
author_facet |
Hugo Wanderley Pinheiro, Roberto |
author_role |
author |
dc.contributor.author.fl_str_mv |
Hugo Wanderley Pinheiro, Roberto |
dc.contributor.advisor1.fl_str_mv |
Darmiton da Cunha Cavalcanti, George |
contributor_str_mv |
Darmiton da Cunha Cavalcanti, George |
dc.subject.por.fl_str_mv |
Classificação de Documentos Seleção de Características K vizinhos mais próximos Naïve Bayes Recuperação de Informação |
topic |
Classificação de Documentos Seleção de Características K vizinhos mais próximos Naïve Bayes Recuperação de Informação |
description |
Os sistemas de classificação de documentos servem, de modo geral, para facilitar o acesso do usuário a uma base de documentos. Esses sistemas podem ser utilizados para detectar spams; recomendar notícias de uma revista, artigos científicos ou produtos de uma loja virtual; refinar buscas e direcioná-las por assunto. Uma das maiores dificuldades na classificação de documentos é sua alta dimensionalidade. A abordagem bag of words, utilizada para extrair as características e obter os vetores que representam os documentos, gera dezenas de milhares de características. Vetores dessa dimensão demandam elevado custo computacional, além de possuir informações irrelevantes e redundantes. Técnicas de seleção de características reduzem a dimensionalidade da representação, de modo a acelerar o processamento do sistema e a facilitar a classificação. Entretanto, a seleção de características utilizada em problemas de classificação de documentos requer um parâmetro m que define quantas características serão selecionadas. Encontrar um bom valor para m é um procedimento complicado e custoso. A idéia introduzida neste trabalho visa remover a necessidade do parâmetro m e garantir que as características selecionadas cubram todos os documentos do conjunto de treinamento. Para atingir esse objetivo, o algoritmo proposto itera sobre os documentos do conjunto de treinamento e, para cada documento, escolhe a característica mais relevante. Se a característica escolhida já tiver sido selecionada, ela é ignorada, caso contrário, ela é selecionada. Deste modo, a quantidade de características é conhecida no final da execução do algoritmo, sem a necessidade de declarar um valor prévio para m. Os métodos propostos seguem essa ideia inicial com certas variações: inserção do parâmetro f para selecionar várias características por documento; utilização de informação local das classes; restrição de quais documentos serão usados no processo de seleção. Os novos algoritmos são comparados com um método clássico (Variable Ranking). Nos experimentos, foram usadas três bases de dados e cinco funções de avaliação de característica. Os resultados mostram que os métodos propostos conseguem melhores taxas de acerto |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:58:24Z |
dc.date.available.fl_str_mv |
2014-06-12T15:58:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Hugo Wanderley Pinheiro, Roberto; Darmiton da Cunha Cavalcanti, George. Seleção de características para problemas de classificação de documentos. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2459 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000g0wr |
identifier_str_mv |
Hugo Wanderley Pinheiro, Roberto; Darmiton da Cunha Cavalcanti, George. Seleção de características para problemas de classificação de documentos. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011. ark:/64986/001300000g0wr |
url |
https://repositorio.ufpe.br/handle/123456789/2459 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2459/1/arquivo4097_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2459/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2459/3/arquivo4097_1.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/2459/4/arquivo4097_1.pdf.jpg |
bitstream.checksum.fl_str_mv |
0cb3006c0211d4a3f7598e6efed04914 8a4605be74aa9ea9d79846c1fba20a33 e0208f683f445814d59b868ccf4192fa b56029ec18c0c3efc46f98bfb7971d98 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172813259014144 |