Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado

Detalhes bibliográficos
Autor(a) principal: SOARES JÚNIOR, Amílcar
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000053x5
Texto Completo: https://repositorio.ufpe.br/handle/123456789/19518
Resumo: A popularização de tecnologias de captura de dados geolocalizados aumentou a quantidade de dados de trajetórias disponível para análise. Trajetórias de objetos móveis são geradas a partir das posições de um objeto que se move durante um certo intervalo de tempo no espaço geográfico. Para diversas aplicações é necessário que as trajetórias sejam divididas em partições menores, denominadas segmentos, que representam algum comportamento relevante para a aplicação. A literatura reporta diversos trabalhos que propõem a segmentação de trajetórias. Entretanto, pouco se discute a respeito de quais algoritmos são mais adequados para um domínio ou quais valores de parâmetros de entrada fazem com que um algoritmo obtenha o melhor desempenho neste mesmo domínio. A grande maioria dos algoritmos de segmentação de trajetórias utiliza critérios pré-definidos para realizar esta tarefa. Poucos trabalhos procuram utilizar critérios nos quais não se sabe a priori que tipos de segmentos são gerados, sendo esta questão pouco explorada na literatura. Outra questão em aberto é o uso de exemplos para induzir um algoritmo de segmentação a encontrar segmentos semelhantes a estes exemplos em outras trajetórias. Esta proposta de tese objetiva resolver estas questões. Primeiro, são propostos os métodos GEnetic Algorithm based on Roc analysis (GEAR) e o Iterated F-Race for Trajectory Segmentation Algorithms (I/F-Race-TSA), que são métodos para auxiliar na escolha da melhor configuração (i.e. valores de parâmetros de entrada) de algoritmos de segmentação de trajetórias. Segundo, é proposto o Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Segmentation (GRASP-UTS), com o objetivo de resolver o problema de segmentação de trajetórias quando o critério de segmentação não é previamente definido. Por último, propomos o GRASP for Semi-supervised Trajectory Segmentation (GRASP-SemTS). O GRASP-SemTS usa exemplos para induzir a tarefa de segmentação a encontrar segmentos semelhantes em outras trajetórias. Foram conduzidos experimentos com os métodos e algoritmos propostos para domínios distintos e para trajetórias reais de objetos móveis. Os resultados mostraram que ambos os métodos GEAR e I/F-Race-TSA foram capazes de calibrar automaticamente os parâmetros de entrada de algoritmos de segmentação de trajetórias para um dado domínio de aplicação. Os algoritmos GRASP-UTS e GRASP-SemTS obtiveram melhor desempenho quando comparados a outros algoritmos de segmentação de trajetórias da literatura contribuindo assim com importantes resultados para a área.
id UFPE_249635e8f6736a7e1415eb7bfed2a4d1
oai_identifier_str oai:repositorio.ufpe.br:123456789/19518
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SOARES JÚNIOR, Amílcarhttp://lattes.cnpq.br/8558048134746515http://lattes.cnpq.br/5134289687536724TIMES, Valéria Cesário2017-07-12T13:16:29Z2017-07-12T13:16:29Z2016-03-10https://repositorio.ufpe.br/handle/123456789/19518ark:/64986/00130000053x5A popularização de tecnologias de captura de dados geolocalizados aumentou a quantidade de dados de trajetórias disponível para análise. Trajetórias de objetos móveis são geradas a partir das posições de um objeto que se move durante um certo intervalo de tempo no espaço geográfico. Para diversas aplicações é necessário que as trajetórias sejam divididas em partições menores, denominadas segmentos, que representam algum comportamento relevante para a aplicação. A literatura reporta diversos trabalhos que propõem a segmentação de trajetórias. Entretanto, pouco se discute a respeito de quais algoritmos são mais adequados para um domínio ou quais valores de parâmetros de entrada fazem com que um algoritmo obtenha o melhor desempenho neste mesmo domínio. A grande maioria dos algoritmos de segmentação de trajetórias utiliza critérios pré-definidos para realizar esta tarefa. Poucos trabalhos procuram utilizar critérios nos quais não se sabe a priori que tipos de segmentos são gerados, sendo esta questão pouco explorada na literatura. Outra questão em aberto é o uso de exemplos para induzir um algoritmo de segmentação a encontrar segmentos semelhantes a estes exemplos em outras trajetórias. Esta proposta de tese objetiva resolver estas questões. Primeiro, são propostos os métodos GEnetic Algorithm based on Roc analysis (GEAR) e o Iterated F-Race for Trajectory Segmentation Algorithms (I/F-Race-TSA), que são métodos para auxiliar na escolha da melhor configuração (i.e. valores de parâmetros de entrada) de algoritmos de segmentação de trajetórias. Segundo, é proposto o Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Segmentation (GRASP-UTS), com o objetivo de resolver o problema de segmentação de trajetórias quando o critério de segmentação não é previamente definido. Por último, propomos o GRASP for Semi-supervised Trajectory Segmentation (GRASP-SemTS). O GRASP-SemTS usa exemplos para induzir a tarefa de segmentação a encontrar segmentos semelhantes em outras trajetórias. Foram conduzidos experimentos com os métodos e algoritmos propostos para domínios distintos e para trajetórias reais de objetos móveis. Os resultados mostraram que ambos os métodos GEAR e I/F-Race-TSA foram capazes de calibrar automaticamente os parâmetros de entrada de algoritmos de segmentação de trajetórias para um dado domínio de aplicação. Os algoritmos GRASP-UTS e GRASP-SemTS obtiveram melhor desempenho quando comparados a outros algoritmos de segmentação de trajetórias da literatura contribuindo assim com importantes resultados para a área.The popularization of technologies for geolocated data increased the amount of trajectory data available for analysis. Moving objects’ trajectories are generated from the positions of an object that moves in the geographical space during a certain amount of time. For many applications, it is necessary to partition trajectories into smaller pieces, named segments, which represent a relevant behavior to the application point of view. The literature reports many studies that propose trajectory segmentation approaches. However, there is a lack of discussions about which algorithm is more likely to be applied in a domain or which values of its input parameters obtain the best performance in the domain. Most algorithms for trajectory segmentation use pre-defined criteria to perform this task. Only few works make use of criteria where the characteristics of the segment are not known a priori and this topic is not well explored in the literature. Another open question is how to use a small amount of labeled segments to induce a segmentation algorithm in order to find such kind of behaviors into unseen trajectories. This thesis proposal aims to solve these questions. First, we propose the GEnetic Algorithm based on Roc analysis (GEAR) and the Iterated F-Race for Trajectory Segmentation Algorithms (I/F-RaceTSA), which are methods that are able to find the best configuration (i.e. input parameter values) of algorithms for trajectory segmentation. Second, we propose a Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Segmentation (GRASP-UTS) aiming to solve the trajectory segmentation problem when the criteria is not determined a priori. Last, we propose the GRASP for Semi-supervised Trajectory Segmentation (RGRASP-SemTS). The GRASP-SemTS solves the problem of using a small amount of labeled data to induce the trajectory segmentation algorithm to find such behaviors into unseen trajectories. Experiments were conducted with the methods and algorithms algorithms using real world trajectory data. Results showed that GEAR and I/F-Race-TSA are capable of finding automatically the input parameter values for a domain. The GRASP-UTS and GRASP-SemTS obtained a better performance when compared to other segmentation algorithms from literature, contributing with important results for this field.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMineração de Dados de TrajetóriasSeleção e Calibração de AlgoritmosSegmentação de TrajetóriasTrajectory Data MiningSelection and Tuning of AlgorithmsTrajectory segmentationAlgoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILtese_doutorado_amilcar-07-2016_versao-cd (1).pdf.jpgtese_doutorado_amilcar-07-2016_versao-cd (1).pdf.jpgGenerated Thumbnailimage/jpeg1297https://repositorio.ufpe.br/bitstream/123456789/19518/5/tese_doutorado_amilcar-07-2016_versao-cd%20%281%29.pdf.jpg65fdfa98ad04c384d3a1b817c2aea1c3MD55ORIGINALtese_doutorado_amilcar-07-2016_versao-cd (1).pdftese_doutorado_amilcar-07-2016_versao-cd (1).pdfapplication/pdf2101060https://repositorio.ufpe.br/bitstream/123456789/19518/1/tese_doutorado_amilcar-07-2016_versao-cd%20%281%29.pdf21d268c59ad60238bce0cde073e6f3cdMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/19518/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/19518/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTtese_doutorado_amilcar-07-2016_versao-cd (1).pdf.txttese_doutorado_amilcar-07-2016_versao-cd (1).pdf.txtExtracted texttext/plain396539https://repositorio.ufpe.br/bitstream/123456789/19518/4/tese_doutorado_amilcar-07-2016_versao-cd%20%281%29.pdf.txt1a8852c818da60540ad0eae605c763d5MD54123456789/195182019-10-25 05:46:16.353oai:repositorio.ufpe.br:123456789/19518TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T08:46:16Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado
title Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado
spellingShingle Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado
SOARES JÚNIOR, Amílcar
Mineração de Dados de Trajetórias
Seleção e Calibração de Algoritmos
Segmentação de Trajetórias
Trajectory Data Mining
Selection and Tuning of Algorithms
Trajectory segmentation
title_short Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado
title_full Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado
title_fullStr Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado
title_full_unstemmed Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado
title_sort Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado
author SOARES JÚNIOR, Amílcar
author_facet SOARES JÚNIOR, Amílcar
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8558048134746515
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5134289687536724
dc.contributor.author.fl_str_mv SOARES JÚNIOR, Amílcar
dc.contributor.advisor1.fl_str_mv TIMES, Valéria Cesário
contributor_str_mv TIMES, Valéria Cesário
dc.subject.por.fl_str_mv Mineração de Dados de Trajetórias
Seleção e Calibração de Algoritmos
Segmentação de Trajetórias
Trajectory Data Mining
Selection and Tuning of Algorithms
Trajectory segmentation
topic Mineração de Dados de Trajetórias
Seleção e Calibração de Algoritmos
Segmentação de Trajetórias
Trajectory Data Mining
Selection and Tuning of Algorithms
Trajectory segmentation
description A popularização de tecnologias de captura de dados geolocalizados aumentou a quantidade de dados de trajetórias disponível para análise. Trajetórias de objetos móveis são geradas a partir das posições de um objeto que se move durante um certo intervalo de tempo no espaço geográfico. Para diversas aplicações é necessário que as trajetórias sejam divididas em partições menores, denominadas segmentos, que representam algum comportamento relevante para a aplicação. A literatura reporta diversos trabalhos que propõem a segmentação de trajetórias. Entretanto, pouco se discute a respeito de quais algoritmos são mais adequados para um domínio ou quais valores de parâmetros de entrada fazem com que um algoritmo obtenha o melhor desempenho neste mesmo domínio. A grande maioria dos algoritmos de segmentação de trajetórias utiliza critérios pré-definidos para realizar esta tarefa. Poucos trabalhos procuram utilizar critérios nos quais não se sabe a priori que tipos de segmentos são gerados, sendo esta questão pouco explorada na literatura. Outra questão em aberto é o uso de exemplos para induzir um algoritmo de segmentação a encontrar segmentos semelhantes a estes exemplos em outras trajetórias. Esta proposta de tese objetiva resolver estas questões. Primeiro, são propostos os métodos GEnetic Algorithm based on Roc analysis (GEAR) e o Iterated F-Race for Trajectory Segmentation Algorithms (I/F-Race-TSA), que são métodos para auxiliar na escolha da melhor configuração (i.e. valores de parâmetros de entrada) de algoritmos de segmentação de trajetórias. Segundo, é proposto o Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Segmentation (GRASP-UTS), com o objetivo de resolver o problema de segmentação de trajetórias quando o critério de segmentação não é previamente definido. Por último, propomos o GRASP for Semi-supervised Trajectory Segmentation (GRASP-SemTS). O GRASP-SemTS usa exemplos para induzir a tarefa de segmentação a encontrar segmentos semelhantes em outras trajetórias. Foram conduzidos experimentos com os métodos e algoritmos propostos para domínios distintos e para trajetórias reais de objetos móveis. Os resultados mostraram que ambos os métodos GEAR e I/F-Race-TSA foram capazes de calibrar automaticamente os parâmetros de entrada de algoritmos de segmentação de trajetórias para um dado domínio de aplicação. Os algoritmos GRASP-UTS e GRASP-SemTS obtiveram melhor desempenho quando comparados a outros algoritmos de segmentação de trajetórias da literatura contribuindo assim com importantes resultados para a área.
publishDate 2016
dc.date.issued.fl_str_mv 2016-03-10
dc.date.accessioned.fl_str_mv 2017-07-12T13:16:29Z
dc.date.available.fl_str_mv 2017-07-12T13:16:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/19518
dc.identifier.dark.fl_str_mv ark:/64986/00130000053x5
url https://repositorio.ufpe.br/handle/123456789/19518
identifier_str_mv ark:/64986/00130000053x5
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/19518/5/tese_doutorado_amilcar-07-2016_versao-cd%20%281%29.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/19518/1/tese_doutorado_amilcar-07-2016_versao-cd%20%281%29.pdf
https://repositorio.ufpe.br/bitstream/123456789/19518/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/19518/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/19518/4/tese_doutorado_amilcar-07-2016_versao-cd%20%281%29.pdf.txt
bitstream.checksum.fl_str_mv 65fdfa98ad04c384d3a1b817c2aea1c3
21d268c59ad60238bce0cde073e6f3cd
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
1a8852c818da60540ad0eae605c763d5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172726671802368