Data warehouse newSQL : uma análise de desempenho explorando estratégias de armazenamento e distribuição
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/00130000012g9 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/40912 |
Resumo: | Data Warehouses (DWs) são bancos de dados projetados para favorecer o processamento ana- lítico de grandes volumes de dados. Com o intuito de prover melhor desempenho de armazena- mento e processamento analítico em DWs, sistemas de bancos de dados NewSQL surgem como uma alternativa promissora. Essa classe de banco de dados oferece facilidades para suportar es- calabilidade horizontal, linguagem SQL e armazenamento principal em memória RAM. Existem estudos que analisam o desempenho de distribuições NewSQL em processamento transacional e analítico de dados, contudo, até onde sabemos, não há estudo que analise o impacto do uso de diferentes esquemas de dados, métodos de distribuição e formas de armazenamento no desempenho de um DW implementado em NewSQL. Dessa forma, usando diferentes volumes de dados, propomos uma análise de desempenho em DWs NewSQL comparando diferentes esquemas de dados (esquema estrela e tabela flat), formas de armazenamento (rowstore e columnstore) e métodos de distribuição (replicação e particionamento por round-robin ou por hash). Para alcançar esse objetivo, realizamos uma avaliação experimental de desempenho em DWs, utilizando o Star Schema Benchmark (SSB) e o Sistema Gerenciador de Banco de Dados (SGBD) MemSQL, em estrutura de cluster de 3 computadores. Para a avaliação experimental, utilizamos métricas de volume e desempenho de tempo em tarefas de carga e consultas de dados. A partir dos dados coletados, verificamos que o uso de tabelas flat, armazenamento columnstore e particionamento por chave hash gerou os melhores resultados no tempo médio de consultas, apresentando, contudo, desvantagens no tempo de carga e no volume de dados armazenado. Destacamos ainda que o uso de columnstore, realizado em disco, conseguiu obter melhores resultados em tarefas de consulta, quando comparado rowstore realizado em RAM, diante todos os cenários avaliados. |
id |
UFPE_2e1667aeee6dc24183368e2196ea07e0 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/40912 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
AZEVEDO, Alesanco Andradehttp://lattes.cnpq.br/7444646402261152http://lattes.cnpq.br/6390018491925933FIDALGO, Robson do Nascimento2021-08-10T13:44:25Z2021-08-10T13:44:25Z2021-02-26AZEVEDO, Alesanco Andrade. Data warehouse newSQL: uma análise de desempenho explorando estratégias de armazenamento e distribuição. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/40912ark:/64986/00130000012g9Data Warehouses (DWs) são bancos de dados projetados para favorecer o processamento ana- lítico de grandes volumes de dados. Com o intuito de prover melhor desempenho de armazena- mento e processamento analítico em DWs, sistemas de bancos de dados NewSQL surgem como uma alternativa promissora. Essa classe de banco de dados oferece facilidades para suportar es- calabilidade horizontal, linguagem SQL e armazenamento principal em memória RAM. Existem estudos que analisam o desempenho de distribuições NewSQL em processamento transacional e analítico de dados, contudo, até onde sabemos, não há estudo que analise o impacto do uso de diferentes esquemas de dados, métodos de distribuição e formas de armazenamento no desempenho de um DW implementado em NewSQL. Dessa forma, usando diferentes volumes de dados, propomos uma análise de desempenho em DWs NewSQL comparando diferentes esquemas de dados (esquema estrela e tabela flat), formas de armazenamento (rowstore e columnstore) e métodos de distribuição (replicação e particionamento por round-robin ou por hash). Para alcançar esse objetivo, realizamos uma avaliação experimental de desempenho em DWs, utilizando o Star Schema Benchmark (SSB) e o Sistema Gerenciador de Banco de Dados (SGBD) MemSQL, em estrutura de cluster de 3 computadores. Para a avaliação experimental, utilizamos métricas de volume e desempenho de tempo em tarefas de carga e consultas de dados. A partir dos dados coletados, verificamos que o uso de tabelas flat, armazenamento columnstore e particionamento por chave hash gerou os melhores resultados no tempo médio de consultas, apresentando, contudo, desvantagens no tempo de carga e no volume de dados armazenado. Destacamos ainda que o uso de columnstore, realizado em disco, conseguiu obter melhores resultados em tarefas de consulta, quando comparado rowstore realizado em RAM, diante todos os cenários avaliados.Data Warehouses (DWs) are databases designed to favor the analytical processing of large volumes of data. In order to provide better storage performance and analytical processing in DWs, NewSQL database systems appear as a promising alternative. This class of database provides facilities to support scale-out, SQL language and main storage in RAM. There are studies that analyze the performance of NewSQL distributions in transactional and analytical data processing, however, as far as we know, there is no study that analyzes the impact of the use of different data schemes, distribution methods and forms of storage on the perfor- mance of a DW implemented in NewSQL. Thus, using different data volumes, we propose a performance analysis in NewSQL DWs comparing different data schemas (star schema and flat table), storage forms (rowstore and columnstore) and distribution methods (replication and partitioning by round-robin or hash). To achieve this goal, we performed an experimental performance evaluation on DWs, using the Star Schema Benchmark (SSB) and the MemSQL Database Manager System (SGBD), in a cluster structure of 3 computers. For the experi- mental evaluation, we used volume and time performance metrics in loading tasks and data queries. From the data collected, we verified that the use of flat tables, columnstore storage and hash key partitioning generated the best results in the average time of queries, presenting, however, disadvantages in the load time and in the volume of data stored. We also highlight that the use of columnstore, performed on disk, managed to obtain better results in query tasks, when compared to rowstore performed in RAM, given all the evaluated scenarios.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessBanco de dadosData warehouseDesempenhoData warehouse newSQL : uma análise de desempenho explorando estratégias de armazenamento e distribuiçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPELICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/40912/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTDISSERTAÇÃO Alesanco Andrade Azevedo.pdf.txtDISSERTAÇÃO Alesanco Andrade Azevedo.pdf.txtExtracted texttext/plain162496https://repositorio.ufpe.br/bitstream/123456789/40912/4/DISSERTA%c3%87%c3%83O%20Alesanco%20Andrade%20Azevedo.pdf.txt28efb8b8e8aec91bd5a258ccea0bfd42MD54THUMBNAILDISSERTAÇÃO Alesanco Andrade Azevedo.pdf.jpgDISSERTAÇÃO Alesanco Andrade Azevedo.pdf.jpgGenerated Thumbnailimage/jpeg1237https://repositorio.ufpe.br/bitstream/123456789/40912/5/DISSERTA%c3%87%c3%83O%20Alesanco%20Andrade%20Azevedo.pdf.jpg87bdb0cfe98dd1231b6e9adf171799eaMD55ORIGINALDISSERTAÇÃO Alesanco Andrade Azevedo.pdfDISSERTAÇÃO Alesanco Andrade Azevedo.pdfapplication/pdf3036198https://repositorio.ufpe.br/bitstream/123456789/40912/1/DISSERTA%c3%87%c3%83O%20Alesanco%20Andrade%20Azevedo.pdf9f91d59404febdbb4f6e369fdfb1f0e2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/40912/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52123456789/409122021-08-11 02:13:59.819oai:repositorio.ufpe.br:123456789/40912TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212021-08-11T05:13:59Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Data warehouse newSQL : uma análise de desempenho explorando estratégias de armazenamento e distribuição |
title |
Data warehouse newSQL : uma análise de desempenho explorando estratégias de armazenamento e distribuição |
spellingShingle |
Data warehouse newSQL : uma análise de desempenho explorando estratégias de armazenamento e distribuição AZEVEDO, Alesanco Andrade Banco de dados Data warehouse Desempenho |
title_short |
Data warehouse newSQL : uma análise de desempenho explorando estratégias de armazenamento e distribuição |
title_full |
Data warehouse newSQL : uma análise de desempenho explorando estratégias de armazenamento e distribuição |
title_fullStr |
Data warehouse newSQL : uma análise de desempenho explorando estratégias de armazenamento e distribuição |
title_full_unstemmed |
Data warehouse newSQL : uma análise de desempenho explorando estratégias de armazenamento e distribuição |
title_sort |
Data warehouse newSQL : uma análise de desempenho explorando estratégias de armazenamento e distribuição |
author |
AZEVEDO, Alesanco Andrade |
author_facet |
AZEVEDO, Alesanco Andrade |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7444646402261152 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6390018491925933 |
dc.contributor.author.fl_str_mv |
AZEVEDO, Alesanco Andrade |
dc.contributor.advisor1.fl_str_mv |
FIDALGO, Robson do Nascimento |
contributor_str_mv |
FIDALGO, Robson do Nascimento |
dc.subject.por.fl_str_mv |
Banco de dados Data warehouse Desempenho |
topic |
Banco de dados Data warehouse Desempenho |
description |
Data Warehouses (DWs) são bancos de dados projetados para favorecer o processamento ana- lítico de grandes volumes de dados. Com o intuito de prover melhor desempenho de armazena- mento e processamento analítico em DWs, sistemas de bancos de dados NewSQL surgem como uma alternativa promissora. Essa classe de banco de dados oferece facilidades para suportar es- calabilidade horizontal, linguagem SQL e armazenamento principal em memória RAM. Existem estudos que analisam o desempenho de distribuições NewSQL em processamento transacional e analítico de dados, contudo, até onde sabemos, não há estudo que analise o impacto do uso de diferentes esquemas de dados, métodos de distribuição e formas de armazenamento no desempenho de um DW implementado em NewSQL. Dessa forma, usando diferentes volumes de dados, propomos uma análise de desempenho em DWs NewSQL comparando diferentes esquemas de dados (esquema estrela e tabela flat), formas de armazenamento (rowstore e columnstore) e métodos de distribuição (replicação e particionamento por round-robin ou por hash). Para alcançar esse objetivo, realizamos uma avaliação experimental de desempenho em DWs, utilizando o Star Schema Benchmark (SSB) e o Sistema Gerenciador de Banco de Dados (SGBD) MemSQL, em estrutura de cluster de 3 computadores. Para a avaliação experimental, utilizamos métricas de volume e desempenho de tempo em tarefas de carga e consultas de dados. A partir dos dados coletados, verificamos que o uso de tabelas flat, armazenamento columnstore e particionamento por chave hash gerou os melhores resultados no tempo médio de consultas, apresentando, contudo, desvantagens no tempo de carga e no volume de dados armazenado. Destacamos ainda que o uso de columnstore, realizado em disco, conseguiu obter melhores resultados em tarefas de consulta, quando comparado rowstore realizado em RAM, diante todos os cenários avaliados. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-08-10T13:44:25Z |
dc.date.available.fl_str_mv |
2021-08-10T13:44:25Z |
dc.date.issued.fl_str_mv |
2021-02-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
AZEVEDO, Alesanco Andrade. Data warehouse newSQL: uma análise de desempenho explorando estratégias de armazenamento e distribuição. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2021. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/40912 |
dc.identifier.dark.fl_str_mv |
ark:/64986/00130000012g9 |
identifier_str_mv |
AZEVEDO, Alesanco Andrade. Data warehouse newSQL: uma análise de desempenho explorando estratégias de armazenamento e distribuição. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2021. ark:/64986/00130000012g9 |
url |
https://repositorio.ufpe.br/handle/123456789/40912 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/40912/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/40912/4/DISSERTA%c3%87%c3%83O%20Alesanco%20Andrade%20Azevedo.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/40912/5/DISSERTA%c3%87%c3%83O%20Alesanco%20Andrade%20Azevedo.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/40912/1/DISSERTA%c3%87%c3%83O%20Alesanco%20Andrade%20Azevedo.pdf https://repositorio.ufpe.br/bitstream/123456789/40912/2/license_rdf |
bitstream.checksum.fl_str_mv |
bd573a5ca8288eb7272482765f819534 28efb8b8e8aec91bd5a258ccea0bfd42 87bdb0cfe98dd1231b6e9adf171799ea 9f91d59404febdbb4f6e369fdfb1f0e2 e39d27027a6cc9cb039ad269a5db8e34 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172686600470528 |