Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples : multi-objective genetic algorithm and a conversion rate driven approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/00130000035jd |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/46818 |
Resumo: | Over the last decades, due to higher specific strength and stiffness, low weight, and good resistance to corrosion, thermoset resin composite materials have been replacing conventional materials in aerospace, maritime, automotive and several other high performance engineering applications. These composites are usually produced in an autoclave by carrying out a cure schedule to crosslink the resin. However, for the case of thick thermosets, the manufacturer’s recommended cure (MRC) schedule cannot be followed, once it is generally intended to thin parts. When applied to thick components, the MRC schedule usually results in cures either that are unnecessarily too long or that overheat the material internally, due to the thermoactived and exothermic aspects of the curing reaction associated to the thermal insulating property of the thermoset. This local overheating results in high gradients in the thermoset properties during the cure that may create residual stresses and structural defects, such as bubbles and cracks. To avoid this and find optimal cure schedules, this work simulated the cure process of a thermoset using the finite element software COMSOL Multiphysics and implemented two optimization methods in MATLAB, connected to the simulations via the COMSOL LiveLink for MATLAB. The first method is an authorial conversion rate driven (CRD) strategy based on cure kinetics, which has a single objective: minimize the cure time. The second one is a multi-objective genetic algorithm (GA) with three conflicting objectives: minimize cure time, minimize the gradient of degree of cure after gel point (AGP) and minimize the gradient of temperature AGP, reflecting the existing trade-off between manufacturing speed and product quality. As constraints for both methods, the minimum degree of cure in the final cured part was set as 0.854, in order to achieve the same material properties achieved by the MRC schedule; and the maximum temperature inside the composite during the cure was limited to 155°C, to avoid material degradation. Both methods searched for optimal two-step cure schedules with a constant heating rate of 3°C/min. The decision variables for the GA optimization and CRD strategy were the first and second plateau temperatures and the duration of the first plateau. The free MATLAB-based software package GOSET was used as the basis to execute an elitist GA, with 20 generations and 50 individuals per generation. The thermoset polymer selected for the study was the LY-556 epoxy resin system, cured in a cylindrical geometry with a height of 60 mm and a diameter of 32 mm. It was found that, in comparison to the MRC schedule, the CRD strategy and GA reduced the cure time by almost the same amount: 87% and 88%, respectively; whereas the gradients of degree of cure and temperature AGP were reduced by the GA by 6% and 31%, respectively. Thus, the methods presented in this work were shown to be effective tools to optimize the cure schedule of thermosets, depending on the objective selected. |
id |
UFPE_2f6c3eb86d46f69f0facdf77ed770a66 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/46818 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
PEREIRA, Larissa de Fátima Chaveshttps://lattes.cnpq.br/4970822064395186http://lattes.cnpq.br/5210533486699425http://lattes.cnpq.br/9118145457237157SILVA, Nadège Sophie Bouchonneau daJOCHUM, Christian2022-09-30T12:51:12Z2022-09-30T12:51:12Z2022-08-29PEREIRA, Larissa de Fátima Chaves. Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples: multi-objective genetic algorithm and a conversion rate driven approach. 2022. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/46818ark:/64986/00130000035jdOver the last decades, due to higher specific strength and stiffness, low weight, and good resistance to corrosion, thermoset resin composite materials have been replacing conventional materials in aerospace, maritime, automotive and several other high performance engineering applications. These composites are usually produced in an autoclave by carrying out a cure schedule to crosslink the resin. However, for the case of thick thermosets, the manufacturer’s recommended cure (MRC) schedule cannot be followed, once it is generally intended to thin parts. When applied to thick components, the MRC schedule usually results in cures either that are unnecessarily too long or that overheat the material internally, due to the thermoactived and exothermic aspects of the curing reaction associated to the thermal insulating property of the thermoset. This local overheating results in high gradients in the thermoset properties during the cure that may create residual stresses and structural defects, such as bubbles and cracks. To avoid this and find optimal cure schedules, this work simulated the cure process of a thermoset using the finite element software COMSOL Multiphysics and implemented two optimization methods in MATLAB, connected to the simulations via the COMSOL LiveLink for MATLAB. The first method is an authorial conversion rate driven (CRD) strategy based on cure kinetics, which has a single objective: minimize the cure time. The second one is a multi-objective genetic algorithm (GA) with three conflicting objectives: minimize cure time, minimize the gradient of degree of cure after gel point (AGP) and minimize the gradient of temperature AGP, reflecting the existing trade-off between manufacturing speed and product quality. As constraints for both methods, the minimum degree of cure in the final cured part was set as 0.854, in order to achieve the same material properties achieved by the MRC schedule; and the maximum temperature inside the composite during the cure was limited to 155°C, to avoid material degradation. Both methods searched for optimal two-step cure schedules with a constant heating rate of 3°C/min. The decision variables for the GA optimization and CRD strategy were the first and second plateau temperatures and the duration of the first plateau. The free MATLAB-based software package GOSET was used as the basis to execute an elitist GA, with 20 generations and 50 individuals per generation. The thermoset polymer selected for the study was the LY-556 epoxy resin system, cured in a cylindrical geometry with a height of 60 mm and a diameter of 32 mm. It was found that, in comparison to the MRC schedule, the CRD strategy and GA reduced the cure time by almost the same amount: 87% and 88%, respectively; whereas the gradients of degree of cure and temperature AGP were reduced by the GA by 6% and 31%, respectively. Thus, the methods presented in this work were shown to be effective tools to optimize the cure schedule of thermosets, depending on the objective selected.CAPESAo longo das últimas décadas, devido à maior resistência e rigidez específicas, baixo peso e boa resistência à corrosão, os materiais compósitos de resina termofixa vêm substituindo os materiais convencionais em aplicações aeroespaciais, marítimas, automotivas e diversas outras aplicações de engenharia de alto desempenho. Esses compósitos geralmente são produzidos em autoclave, executando-se um cronograma de cura para reticulação da resina. No entanto, para o caso de termofixos espessos, o perfil de cura recomendado pelo fabricante (PCRF) não pode ser seguido, uma vez que geralmente é destinado a peças finas. Quando aplicado a componentes espessos, o PCRF geralmente resulta em curas desnecessariamente muito longas ou que superaquecem o material internamente, devido às características exotérmica e termoativada da reação de cura associadas à propriedade isolante térmica do polímero termofixo. Esse superaquecimento local resulta em altos gradientes nas propriedades do termofixo durante a cura que podem criar tensões residuais e defeitos estruturais, como bolhas e rachaduras. Para evitar isso e encontrar cronogramas de cura ótimos, este trabalho simulou o processo de cura de um termofixo usando o software de elementos finitos COMSOL Multiphysics e implementou dois métodos de otimização no MATLAB, conectados às simulações via COMSOL LiveLink for MATLAB. O primeiro método é uma estratégia autoral impulsionada pela taxa de conversão (ITC), que se baseia na cinética de cura e tem um único objetivo: minimizar o tempo de cura. O segundo é um algoritmo genético (AG) multi-objetivo com três objetivos conflitantes: minimizar o tempo de cura, minimizar o gradiente de grau de cura após o ponto de gel (APG) e minimizar o gradiente de temperatura APG, refletindo o conflito existente entre velocidade de fabricação e qualidade do produto. Como restrições para ambos os métodos, o grau mínimo de cura na peça final curada foi fixado em 0,854, a fim de alcançar as mesmas propriedades do material alcançadas pelo PCRF; e a temperatura máxima no interior do termofixo durante a cura foi limitada a 155°C, para evitar a degradação térmica do material. Ambos os métodos buscaram perfis de cura de duas etapas com uma taxa de aquecimento constante de 3°C/min. As variáveis de decisão para o AG e estratégia ITC foram as temperaturas do primeiro e do segundo platô e a duração do primeiro platô. O pacote de software gratuito GOSET, baseado em MATLAB, foi utilizado como base para executar um AG elitista, com 20 gerações e 50 indivíduos por geração. O polímero termofixo selecionado para o estudo foi o sistema de resina epóxi LY-556, curado em geometria cilíndrica com altura de 60 mm e diâmetro de 32 mm. Verificou-se que, em comparação com o ciclo de cura recomendado pelo fabricante, a estratégia ITC e o AG reduziram o tempo de cura em quase a mesma quantidade: 87% e 88%, respectivamente; enquanto que os gradientes de grau de cura e temperatura APG foram reduzidos pelo AG em 6% e 31%, respectivamente. Assim, os métodos apresentados neste trabalho mostraram-se ferramentas eficazes para otimizar o perfil de cura de materiais termofixos, dependendo do objetivo selecionado.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia MecanicaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia mecânicaTermofixosProcesso de curaElementos finitosOtimizaçãoEstratégia impulsionada pela taxa de conversãoAlgoritmo genético multi-objetivoMultiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples : multi-objective genetic algorithm and a conversion rate driven approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTDISSERTAÇÃO Larissa de Fátima Chaves Pereira .pdf.txtDISSERTAÇÃO Larissa de Fátima Chaves Pereira .pdf.txtExtracted texttext/plain325489https://repositorio.ufpe.br/bitstream/123456789/46818/4/DISSERTA%c3%87%c3%83O%20Larissa%20de%20F%c3%a1tima%20Chaves%20Pereira%20.pdf.txtfc1674a9d0a5a8ff942aa8b391e614e9MD54THUMBNAILDISSERTAÇÃO Larissa de Fátima Chaves Pereira .pdf.jpgDISSERTAÇÃO Larissa de Fátima Chaves Pereira .pdf.jpgGenerated Thumbnailimage/jpeg1248https://repositorio.ufpe.br/bitstream/123456789/46818/5/DISSERTA%c3%87%c3%83O%20Larissa%20de%20F%c3%a1tima%20Chaves%20Pereira%20.pdf.jpg7ba2cbd8ccf6e2b6f02d9da10205d574MD55ORIGINALDISSERTAÇÃO Larissa de Fátima Chaves Pereira .pdfDISSERTAÇÃO Larissa de Fátima Chaves Pereira .pdfapplication/pdf6786624https://repositorio.ufpe.br/bitstream/123456789/46818/1/DISSERTA%c3%87%c3%83O%20Larissa%20de%20F%c3%a1tima%20Chaves%20Pereira%20.pdfb380cf641cbc993a6e64944e1e9e0ed6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/46818/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/46818/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53123456789/468182022-10-01 03:24:35.429oai:repositorio.ufpe.br:123456789/46818VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-10-01T06:24:35Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples : multi-objective genetic algorithm and a conversion rate driven approach |
title |
Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples : multi-objective genetic algorithm and a conversion rate driven approach |
spellingShingle |
Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples : multi-objective genetic algorithm and a conversion rate driven approach PEREIRA, Larissa de Fátima Chaves Engenharia mecânica Termofixos Processo de cura Elementos finitos Otimização Estratégia impulsionada pela taxa de conversão Algoritmo genético multi-objetivo |
title_short |
Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples : multi-objective genetic algorithm and a conversion rate driven approach |
title_full |
Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples : multi-objective genetic algorithm and a conversion rate driven approach |
title_fullStr |
Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples : multi-objective genetic algorithm and a conversion rate driven approach |
title_full_unstemmed |
Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples : multi-objective genetic algorithm and a conversion rate driven approach |
title_sort |
Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples : multi-objective genetic algorithm and a conversion rate driven approach |
author |
PEREIRA, Larissa de Fátima Chaves |
author_facet |
PEREIRA, Larissa de Fátima Chaves |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
https://lattes.cnpq.br/4970822064395186 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5210533486699425 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9118145457237157 |
dc.contributor.author.fl_str_mv |
PEREIRA, Larissa de Fátima Chaves |
dc.contributor.advisor1.fl_str_mv |
SILVA, Nadège Sophie Bouchonneau da |
dc.contributor.advisor-co1.fl_str_mv |
JOCHUM, Christian |
contributor_str_mv |
SILVA, Nadège Sophie Bouchonneau da JOCHUM, Christian |
dc.subject.por.fl_str_mv |
Engenharia mecânica Termofixos Processo de cura Elementos finitos Otimização Estratégia impulsionada pela taxa de conversão Algoritmo genético multi-objetivo |
topic |
Engenharia mecânica Termofixos Processo de cura Elementos finitos Otimização Estratégia impulsionada pela taxa de conversão Algoritmo genético multi-objetivo |
description |
Over the last decades, due to higher specific strength and stiffness, low weight, and good resistance to corrosion, thermoset resin composite materials have been replacing conventional materials in aerospace, maritime, automotive and several other high performance engineering applications. These composites are usually produced in an autoclave by carrying out a cure schedule to crosslink the resin. However, for the case of thick thermosets, the manufacturer’s recommended cure (MRC) schedule cannot be followed, once it is generally intended to thin parts. When applied to thick components, the MRC schedule usually results in cures either that are unnecessarily too long or that overheat the material internally, due to the thermoactived and exothermic aspects of the curing reaction associated to the thermal insulating property of the thermoset. This local overheating results in high gradients in the thermoset properties during the cure that may create residual stresses and structural defects, such as bubbles and cracks. To avoid this and find optimal cure schedules, this work simulated the cure process of a thermoset using the finite element software COMSOL Multiphysics and implemented two optimization methods in MATLAB, connected to the simulations via the COMSOL LiveLink for MATLAB. The first method is an authorial conversion rate driven (CRD) strategy based on cure kinetics, which has a single objective: minimize the cure time. The second one is a multi-objective genetic algorithm (GA) with three conflicting objectives: minimize cure time, minimize the gradient of degree of cure after gel point (AGP) and minimize the gradient of temperature AGP, reflecting the existing trade-off between manufacturing speed and product quality. As constraints for both methods, the minimum degree of cure in the final cured part was set as 0.854, in order to achieve the same material properties achieved by the MRC schedule; and the maximum temperature inside the composite during the cure was limited to 155°C, to avoid material degradation. Both methods searched for optimal two-step cure schedules with a constant heating rate of 3°C/min. The decision variables for the GA optimization and CRD strategy were the first and second plateau temperatures and the duration of the first plateau. The free MATLAB-based software package GOSET was used as the basis to execute an elitist GA, with 20 generations and 50 individuals per generation. The thermoset polymer selected for the study was the LY-556 epoxy resin system, cured in a cylindrical geometry with a height of 60 mm and a diameter of 32 mm. It was found that, in comparison to the MRC schedule, the CRD strategy and GA reduced the cure time by almost the same amount: 87% and 88%, respectively; whereas the gradients of degree of cure and temperature AGP were reduced by the GA by 6% and 31%, respectively. Thus, the methods presented in this work were shown to be effective tools to optimize the cure schedule of thermosets, depending on the objective selected. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-09-30T12:51:12Z |
dc.date.available.fl_str_mv |
2022-09-30T12:51:12Z |
dc.date.issued.fl_str_mv |
2022-08-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PEREIRA, Larissa de Fátima Chaves. Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples: multi-objective genetic algorithm and a conversion rate driven approach. 2022. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/46818 |
dc.identifier.dark.fl_str_mv |
ark:/64986/00130000035jd |
identifier_str_mv |
PEREIRA, Larissa de Fátima Chaves. Multiphysics simulation and optimization of the curing process of thick thermosetting epoxy samples: multi-objective genetic algorithm and a conversion rate driven approach. 2022. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/00130000035jd |
url |
https://repositorio.ufpe.br/handle/123456789/46818 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia Mecanica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/46818/4/DISSERTA%c3%87%c3%83O%20Larissa%20de%20F%c3%a1tima%20Chaves%20Pereira%20.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/46818/5/DISSERTA%c3%87%c3%83O%20Larissa%20de%20F%c3%a1tima%20Chaves%20Pereira%20.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/46818/1/DISSERTA%c3%87%c3%83O%20Larissa%20de%20F%c3%a1tima%20Chaves%20Pereira%20.pdf https://repositorio.ufpe.br/bitstream/123456789/46818/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/46818/3/license.txt |
bitstream.checksum.fl_str_mv |
fc1674a9d0a5a8ff942aa8b391e614e9 7ba2cbd8ccf6e2b6f02d9da10205d574 b380cf641cbc993a6e64944e1e9e0ed6 e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172707124248576 |