Essays on nonnormal regression modeling

Detalhes bibliográficos
Autor(a) principal: LUCENA, Sadraque Eneas de Figueiredo
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000f7t2
Texto Completo: https://repositorio.ufpe.br/handle/123456789/24583
Resumo: Na modelagem de dados por meio de regressão, há uma ampla variedade modelos que podem ser ajustados para avaliar a relação entre a variável resposta e os regressores. Em algumas situações, a modelagem pode envolver dois ou mais modelos com ajustes semelhantes, embora com especificações distintas. Quando nenhum dos modelos ajustados pode ser obtido por meio de restrições paramétricas impostas aos outros modelos, dizemos que eles são não-encaixados. Dois possíveis métodos para selecionar o mais adequado entre modelos lineares não-encaixados são os testes J e MJ. Nesta tese é apresentada uma adaptação desses testes para a classe de modelos denominada generalized additive models for location, scale and shape (GAMLSS). Evidências obtidas a partir de simulações de Monte Carlo em pequenas amostras e uma aplicação são reportadas. Também é apresentada uma abordagem paramétrica para o modelo de regressão simplex aumentado. Este modelo pode ser ajustado nos casos em que a variável resposta assume valores nos intervalos [0,1), (0,1] ou [0,1]. Aqui o modelo é chamado de modelo de regressão simplex inflacionado em zero e/ou um. Inferência, medidas de diagnóstico e uma aplicação também são apresentados.
id UFPE_3299791bdc5aadc32c3abf9d282bd6a5
oai_identifier_str oai:repositorio.ufpe.br:123456789/24583
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling LUCENA, Sadraque Eneas de Figueiredohttp://lattes.cnpq.br/4104101783976483http://lattes.cnpq.br/2225977664095899CRIBARI NETO, Francisco2018-05-10T18:15:32Z2018-05-10T18:15:32Z2017-02-10https://repositorio.ufpe.br/handle/123456789/24583ark:/64986/001300000f7t2Na modelagem de dados por meio de regressão, há uma ampla variedade modelos que podem ser ajustados para avaliar a relação entre a variável resposta e os regressores. Em algumas situações, a modelagem pode envolver dois ou mais modelos com ajustes semelhantes, embora com especificações distintas. Quando nenhum dos modelos ajustados pode ser obtido por meio de restrições paramétricas impostas aos outros modelos, dizemos que eles são não-encaixados. Dois possíveis métodos para selecionar o mais adequado entre modelos lineares não-encaixados são os testes J e MJ. Nesta tese é apresentada uma adaptação desses testes para a classe de modelos denominada generalized additive models for location, scale and shape (GAMLSS). Evidências obtidas a partir de simulações de Monte Carlo em pequenas amostras e uma aplicação são reportadas. Também é apresentada uma abordagem paramétrica para o modelo de regressão simplex aumentado. Este modelo pode ser ajustado nos casos em que a variável resposta assume valores nos intervalos [0,1), (0,1] ou [0,1]. Aqui o modelo é chamado de modelo de regressão simplex inflacionado em zero e/ou um. Inferência, medidas de diagnóstico e uma aplicação também são apresentados.CAPESIn regression analysis a wide range of techniques can be used to investigate the relation-ship between the response and the regressors. In some situations, two or more competing models may fit the data equally well. When none of them can be obtained from the others by imposing parametric restrictions, we say the models are nonnested. In order to choose between competing nonnested linear regression models, one can use the J and MJ tests. In this PhD thesis we present an adaptation of such tests to nonnested models in the class of generalized additive models for location, scale and shape (GAMLSS). Monte Carlo evidence on the finite sample behaviour of the proposed tests and an application are reported. We also develop a frequentist approach to the augmented simplex regression model proposed by Bandyopadhyay, Galvis and Lachos [Bandyopadhyay, D., Galvis, D. M. & Lachos, V. H. (2014), ‘Augmented mixed models for clustered proportion data’, Statistical Methods in Medical Research (In Press)]. It can be used when the response assumes values in [0,1), (0,1] or [0,1] and we call it zero and/or one inflated simplex regression model. Inference, diagnostics measures and an application are also reported.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnálise de regressãoRegressão simplexEssays on nonnormal regression modelinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Sadraque Eneas de Figueiredo Lucena.pdf.jpgTESE Sadraque Eneas de Figueiredo Lucena.pdf.jpgGenerated Thumbnailimage/jpeg1157https://repositorio.ufpe.br/bitstream/123456789/24583/4/TESE%20Sadraque%20Eneas%20de%20Figueiredo%20Lucena.pdf.jpgf6c129c5b047c683dd5cd53cdf38db09MD54ORIGINALTESE Sadraque Eneas de Figueiredo Lucena.pdfTESE Sadraque Eneas de Figueiredo Lucena.pdfapplication/pdf1630044https://repositorio.ufpe.br/bitstream/123456789/24583/1/TESE%20Sadraque%20Eneas%20de%20Figueiredo%20Lucena.pdfd0b4d058618d8bbaa03e3e85a1c5a94aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/24583/2/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD52TEXTTESE Sadraque Eneas de Figueiredo Lucena.pdf.txtTESE Sadraque Eneas de Figueiredo Lucena.pdf.txtExtracted texttext/plain178736https://repositorio.ufpe.br/bitstream/123456789/24583/3/TESE%20Sadraque%20Eneas%20de%20Figueiredo%20Lucena.pdf.txt6cefacedcc047119d17946ea9cba59fcMD53123456789/245832019-10-25 23:53:06.98oai:repositorio.ufpe.br:123456789/24583TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T02:53:06Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Essays on nonnormal regression modeling
title Essays on nonnormal regression modeling
spellingShingle Essays on nonnormal regression modeling
LUCENA, Sadraque Eneas de Figueiredo
Análise de regressão
Regressão simplex
title_short Essays on nonnormal regression modeling
title_full Essays on nonnormal regression modeling
title_fullStr Essays on nonnormal regression modeling
title_full_unstemmed Essays on nonnormal regression modeling
title_sort Essays on nonnormal regression modeling
author LUCENA, Sadraque Eneas de Figueiredo
author_facet LUCENA, Sadraque Eneas de Figueiredo
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4104101783976483
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2225977664095899
dc.contributor.author.fl_str_mv LUCENA, Sadraque Eneas de Figueiredo
dc.contributor.advisor1.fl_str_mv CRIBARI NETO, Francisco
contributor_str_mv CRIBARI NETO, Francisco
dc.subject.por.fl_str_mv Análise de regressão
Regressão simplex
topic Análise de regressão
Regressão simplex
description Na modelagem de dados por meio de regressão, há uma ampla variedade modelos que podem ser ajustados para avaliar a relação entre a variável resposta e os regressores. Em algumas situações, a modelagem pode envolver dois ou mais modelos com ajustes semelhantes, embora com especificações distintas. Quando nenhum dos modelos ajustados pode ser obtido por meio de restrições paramétricas impostas aos outros modelos, dizemos que eles são não-encaixados. Dois possíveis métodos para selecionar o mais adequado entre modelos lineares não-encaixados são os testes J e MJ. Nesta tese é apresentada uma adaptação desses testes para a classe de modelos denominada generalized additive models for location, scale and shape (GAMLSS). Evidências obtidas a partir de simulações de Monte Carlo em pequenas amostras e uma aplicação são reportadas. Também é apresentada uma abordagem paramétrica para o modelo de regressão simplex aumentado. Este modelo pode ser ajustado nos casos em que a variável resposta assume valores nos intervalos [0,1), (0,1] ou [0,1]. Aqui o modelo é chamado de modelo de regressão simplex inflacionado em zero e/ou um. Inferência, medidas de diagnóstico e uma aplicação também são apresentados.
publishDate 2017
dc.date.issued.fl_str_mv 2017-02-10
dc.date.accessioned.fl_str_mv 2018-05-10T18:15:32Z
dc.date.available.fl_str_mv 2018-05-10T18:15:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/24583
dc.identifier.dark.fl_str_mv ark:/64986/001300000f7t2
url https://repositorio.ufpe.br/handle/123456789/24583
identifier_str_mv ark:/64986/001300000f7t2
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Estatistica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/24583/4/TESE%20Sadraque%20Eneas%20de%20Figueiredo%20Lucena.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/24583/1/TESE%20Sadraque%20Eneas%20de%20Figueiredo%20Lucena.pdf
https://repositorio.ufpe.br/bitstream/123456789/24583/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/24583/3/TESE%20Sadraque%20Eneas%20de%20Figueiredo%20Lucena.pdf.txt
bitstream.checksum.fl_str_mv f6c129c5b047c683dd5cd53cdf38db09
d0b4d058618d8bbaa03e3e85a1c5a94a
4b8a02c7f2818eaf00dcf2260dd5eb08
6cefacedcc047119d17946ea9cba59fc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172805908496384