Mine - a framework for dynamic regressor selection

Detalhes bibliográficos
Autor(a) principal: MOURA, Thiago José Marques
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000028z2
Texto Completo: https://repositorio.ufpe.br/handle/123456789/35381
Resumo: Dynamic Regressor Selection (DRS) systems work by selecting the most competent regressors from an ensemble to estimate the target value of a given test pattern. Hence, the central issue in dynamic selection techniques is how to define the competence of the regressors to select the most competent ones. This competence is usually quantified using a single measure, such as the performance of the regressors in local regions of the feature space around the test pattern, called the region of competence. However, to decide what is the best measure to correctly calculate the level of competence is a hard task, because no one is the best for any task. Works using ensemble of classifiers present a wide variety of measures that are used to calculate the competence. Using ensemble of regressors, many of these measures can not be used or adapted. Thus, in this work, we present a framework for DRS, called Meta INtEgration (MINE), that aims at selecting and combining the most competent regressors from a homogeneous ensemble during the evaluation of a given test pattern. The proposed framework uses the combination of different measures extracted from the region of competence, as a criterion for the selection and combination of the regressors. Also, we have done a survey in the literature on some measures used with regression problems to test the performance of the dynamic regression selection algorithms found in the literature. The measures are extracted from region of competence and they are aimed at capturing different behaviors of the regressors. Thus, for each test pattern, only the most competent regressors are selected and combined. Using the MINE framework, comprehensive experiments on 20 regression datasets show that MINE improves the final estimate performance when compared to state-of-the-art techniques. Also, experiments are performed on 15 real regression problems datasets using the state-of-the-art dynamic regressor selection techniques by changing only the measure that computes the competence. The results show that the measures have different performance throughout the datasets and none of them are better in all situations.
id UFPE_333e156cc857138a29ea18363a339c9d
oai_identifier_str oai:repositorio.ufpe.br:123456789/35381
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling MOURA, Thiago José Marqueshttp://lattes.cnpq.br/4818237460329665http://lattes.cnpq.br/8577312109146354http://lattes.cnpq.br/8607171759049558CAVALCANTI, George Darmiton da CunhaOLIVEIRA, Luiz Eduardo Soares de2019-11-29T19:44:29Z2019-11-29T19:44:29Z2019-08-12MOURA, Thiago José Marques. Mine - a framework for dynamic regressor selection. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.https://repositorio.ufpe.br/handle/123456789/35381ark:/64986/00130000028z2Dynamic Regressor Selection (DRS) systems work by selecting the most competent regressors from an ensemble to estimate the target value of a given test pattern. Hence, the central issue in dynamic selection techniques is how to define the competence of the regressors to select the most competent ones. This competence is usually quantified using a single measure, such as the performance of the regressors in local regions of the feature space around the test pattern, called the region of competence. However, to decide what is the best measure to correctly calculate the level of competence is a hard task, because no one is the best for any task. Works using ensemble of classifiers present a wide variety of measures that are used to calculate the competence. Using ensemble of regressors, many of these measures can not be used or adapted. Thus, in this work, we present a framework for DRS, called Meta INtEgration (MINE), that aims at selecting and combining the most competent regressors from a homogeneous ensemble during the evaluation of a given test pattern. The proposed framework uses the combination of different measures extracted from the region of competence, as a criterion for the selection and combination of the regressors. Also, we have done a survey in the literature on some measures used with regression problems to test the performance of the dynamic regression selection algorithms found in the literature. The measures are extracted from region of competence and they are aimed at capturing different behaviors of the regressors. Thus, for each test pattern, only the most competent regressors are selected and combined. Using the MINE framework, comprehensive experiments on 20 regression datasets show that MINE improves the final estimate performance when compared to state-of-the-art techniques. Also, experiments are performed on 15 real regression problems datasets using the state-of-the-art dynamic regressor selection techniques by changing only the measure that computes the competence. The results show that the measures have different performance throughout the datasets and none of them are better in all situations.Sistemas de seleção dinâmica de regressores (Dynamic Regressor Selection - DRS) funcionam selecionando os regressores mais competentes de um ensemble com o objetivo de estimar o valor de um dado padrão de teste. Assim, a questão central nas técnicas de seleção dinâmica é como definir a competência dos regressores para selecionar os mais competentes. Essa competência é geralmente quantificada usando uma única medida, como o desempenho dos regressores em regiões locais do espaço de características em torno do padrão de teste, chamado de região de competência. No entanto, decidir qual é a melhor medida para calcular corretamente o nível de competência é uma tarefa difícil, porque nenhuma delas é a melhor para qualquer tarefa. Trabalhos usando ensemble de classificadores apresentam uma grande variedade de medidas que são usadas para calcular a competência. Usando ensemble de regressores, muitas dessas medidas não podem ser usadas ou adaptadas. Assim, neste trabalho, apresentamos um framework para DRS, chamado Meta INtEgration (MINE), que visa selecionar e combinar os regressores mais competentes de um ensemble homogêneo durante a avaliação de um dado padrão de teste. O framework proposto utiliza a combinação de diferentes medidas extraídas da região de competência como critério para a seleção e combinação dos regressores. Além disso, fizemos um levantamento na literatura sobre algumas medidas utilizadas com problemas de regressão para testar o desempenho dos algoritmos de seleção dinâmica de regressores encontrados na literatura. As medidas são extraídas da região de competência e visam capturar diferentes comportamentos dos regressores. Assim, para cada padrão de teste, apenas os regressores mais competentes são selecionados e combinados. Usando o framework MINE, experimentos foram realizados em 20 bases de dados de regressão mostrando que o MINE melhora o desempenho da estimativa final quando comparado com as técnicas da literatura. Também, experimentos foram realizados com 15 bases de dados de problemas reais de regressão, usando técnicas de seleção dinâmica da literatura, alterando apenas a medida que calcula a competência. Os resultados mostram que as medidas têm desempenho diferente ao longo das bases de dados e nenhuma delas é melhor em todas as situações.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalRegressoresMedidasDinâmica de RegressoresMine - a framework for dynamic regressor selectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Thiago José Marques Moura.pdfTESE Thiago José Marques Moura.pdfapplication/pdf1448708https://repositorio.ufpe.br/bitstream/123456789/35381/1/TESE%20Thiago%20Jos%c3%a9%20Marques%20Moura.pdfcfaf5b7a1c79ac873a617e0d45d5e210MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/35381/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufpe.br/bitstream/123456789/35381/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTTESE Thiago José Marques Moura.pdf.txtTESE Thiago José Marques Moura.pdf.txtExtracted texttext/plain222232https://repositorio.ufpe.br/bitstream/123456789/35381/4/TESE%20Thiago%20Jos%c3%a9%20Marques%20Moura.pdf.txt4dfd8dfab754e63eda18fb30fd24f560MD54THUMBNAILTESE Thiago José Marques Moura.pdf.jpgTESE Thiago José Marques Moura.pdf.jpgGenerated Thumbnailimage/jpeg1241https://repositorio.ufpe.br/bitstream/123456789/35381/5/TESE%20Thiago%20Jos%c3%a9%20Marques%20Moura.pdf.jpg497f4b547377ec3bc08e7b5789b3646bMD55123456789/353812019-12-17 15:23:43.285oai:repositorio.ufpe.br:123456789/35381Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-12-17T18:23:43Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Mine - a framework for dynamic regressor selection
title Mine - a framework for dynamic regressor selection
spellingShingle Mine - a framework for dynamic regressor selection
MOURA, Thiago José Marques
Inteligência computacional
Regressores
Medidas
Dinâmica de Regressores
title_short Mine - a framework for dynamic regressor selection
title_full Mine - a framework for dynamic regressor selection
title_fullStr Mine - a framework for dynamic regressor selection
title_full_unstemmed Mine - a framework for dynamic regressor selection
title_sort Mine - a framework for dynamic regressor selection
author MOURA, Thiago José Marques
author_facet MOURA, Thiago José Marques
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4818237460329665
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8577312109146354
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8607171759049558
dc.contributor.author.fl_str_mv MOURA, Thiago José Marques
dc.contributor.advisor1.fl_str_mv CAVALCANTI, George Darmiton da Cunha
dc.contributor.advisor-co1.fl_str_mv OLIVEIRA, Luiz Eduardo Soares de
contributor_str_mv CAVALCANTI, George Darmiton da Cunha
OLIVEIRA, Luiz Eduardo Soares de
dc.subject.por.fl_str_mv Inteligência computacional
Regressores
Medidas
Dinâmica de Regressores
topic Inteligência computacional
Regressores
Medidas
Dinâmica de Regressores
description Dynamic Regressor Selection (DRS) systems work by selecting the most competent regressors from an ensemble to estimate the target value of a given test pattern. Hence, the central issue in dynamic selection techniques is how to define the competence of the regressors to select the most competent ones. This competence is usually quantified using a single measure, such as the performance of the regressors in local regions of the feature space around the test pattern, called the region of competence. However, to decide what is the best measure to correctly calculate the level of competence is a hard task, because no one is the best for any task. Works using ensemble of classifiers present a wide variety of measures that are used to calculate the competence. Using ensemble of regressors, many of these measures can not be used or adapted. Thus, in this work, we present a framework for DRS, called Meta INtEgration (MINE), that aims at selecting and combining the most competent regressors from a homogeneous ensemble during the evaluation of a given test pattern. The proposed framework uses the combination of different measures extracted from the region of competence, as a criterion for the selection and combination of the regressors. Also, we have done a survey in the literature on some measures used with regression problems to test the performance of the dynamic regression selection algorithms found in the literature. The measures are extracted from region of competence and they are aimed at capturing different behaviors of the regressors. Thus, for each test pattern, only the most competent regressors are selected and combined. Using the MINE framework, comprehensive experiments on 20 regression datasets show that MINE improves the final estimate performance when compared to state-of-the-art techniques. Also, experiments are performed on 15 real regression problems datasets using the state-of-the-art dynamic regressor selection techniques by changing only the measure that computes the competence. The results show that the measures have different performance throughout the datasets and none of them are better in all situations.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-11-29T19:44:29Z
dc.date.available.fl_str_mv 2019-11-29T19:44:29Z
dc.date.issued.fl_str_mv 2019-08-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MOURA, Thiago José Marques. Mine - a framework for dynamic regressor selection. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/35381
dc.identifier.dark.fl_str_mv ark:/64986/00130000028z2
identifier_str_mv MOURA, Thiago José Marques. Mine - a framework for dynamic regressor selection. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.
ark:/64986/00130000028z2
url https://repositorio.ufpe.br/handle/123456789/35381
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/35381/1/TESE%20Thiago%20Jos%c3%a9%20Marques%20Moura.pdf
https://repositorio.ufpe.br/bitstream/123456789/35381/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/35381/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/35381/4/TESE%20Thiago%20Jos%c3%a9%20Marques%20Moura.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/35381/5/TESE%20Thiago%20Jos%c3%a9%20Marques%20Moura.pdf.jpg
bitstream.checksum.fl_str_mv cfaf5b7a1c79ac873a617e0d45d5e210
e39d27027a6cc9cb039ad269a5db8e34
8a4605be74aa9ea9d79846c1fba20a33
4dfd8dfab754e63eda18fb30fd24f560
497f4b547377ec3bc08e7b5789b3646b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172698693697536