Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo

Detalhes bibliográficos
Autor(a) principal: Luis Santiago Maia, André
Data de Publicação: 2010
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000006nvv
Texto Completo: https://repositorio.ufpe.br/handle/123456789/1719
Resumo: Os dados simbólicos apresentam, em sua estrutura, formas interessantes para se transformar grandes bases de dados clássicos em novos conjuntos de dados de tamanho reduzido, facilitando a manipulação e proporcionando novas técnicas de análise dos mesmos. No entanto, mesmo com os recentes avanços promovidos por pesquisadores nesta área, o volume de técnicas de manipulação e, consequentemente, de análise de dados simbólicos (ADS) ainda é incipiente. Uma série temporal do tipo intervalo (STI), no campo de dados simbólicos, pode ser definida como um conjunto de intervalos observados sequencialmente no tempo, em que cada intervalo é descrito por um vetor bidimensional com elementos em IR representados pelo limite superior e pelo limite inferior. O desenvolvimento de técnicas para previsão de STI é uma área de pesquisa muito promissora e os poucos resultados relatados na literatura surgiram muito recentemente. Nesta tese, estendemos técnicas clássicas de análise de séries temporais para descrição, modelagem e previsão de STI no domínio de ADS. Neste contexto, nós apresentamos técnicas para descrição de uma STI, envolvendo cálculo de estatísticas sumárias e representação gráfica dos dados. Na modelagem, apresentamos métodos que consistem na explicação do processo gerador da STI a partir de certo modelo, bem como métodos de estimação de parâmetros e métodos para avaliação da qualidade do modelo, em termos do ajuste
id UFPE_398111b5fbd1868c47ec23171b4fe982
oai_identifier_str oai:repositorio.ufpe.br:123456789/1719
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Luis Santiago Maia, Andréde Assis Tenório Carvalho, Francisco 2014-06-12T15:52:00Z2014-06-12T15:52:00Z2010-01-31Luis Santiago Maia, André; de Assis Tenório Carvalho, Francisco. Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo. 2010. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.https://repositorio.ufpe.br/handle/123456789/1719ark:/64986/0013000006nvvOs dados simbólicos apresentam, em sua estrutura, formas interessantes para se transformar grandes bases de dados clássicos em novos conjuntos de dados de tamanho reduzido, facilitando a manipulação e proporcionando novas técnicas de análise dos mesmos. No entanto, mesmo com os recentes avanços promovidos por pesquisadores nesta área, o volume de técnicas de manipulação e, consequentemente, de análise de dados simbólicos (ADS) ainda é incipiente. Uma série temporal do tipo intervalo (STI), no campo de dados simbólicos, pode ser definida como um conjunto de intervalos observados sequencialmente no tempo, em que cada intervalo é descrito por um vetor bidimensional com elementos em IR representados pelo limite superior e pelo limite inferior. O desenvolvimento de técnicas para previsão de STI é uma área de pesquisa muito promissora e os poucos resultados relatados na literatura surgiram muito recentemente. Nesta tese, estendemos técnicas clássicas de análise de séries temporais para descrição, modelagem e previsão de STI no domínio de ADS. Neste contexto, nós apresentamos técnicas para descrição de uma STI, envolvendo cálculo de estatísticas sumárias e representação gráfica dos dados. Na modelagem, apresentamos métodos que consistem na explicação do processo gerador da STI a partir de certo modelo, bem como métodos de estimação de parâmetros e métodos para avaliação da qualidade do modelo, em termos do ajusteConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnálise de séries temporaisDados do tipo intervaloAnálise de dados simbólicosAlisamento exponencialModelos ARMA e ARIMARedes neurais artificiaisExtensão de técnicas clássicas para análise de séries temporais do tipo intervaloinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo3072_1.pdf.jpgarquivo3072_1.pdf.jpgGenerated Thumbnailimage/jpeg1302https://repositorio.ufpe.br/bitstream/123456789/1719/4/arquivo3072_1.pdf.jpgb4bba8b771c39eecf27f688b2722c44bMD54ORIGINALarquivo3072_1.pdfapplication/pdf2151220https://repositorio.ufpe.br/bitstream/123456789/1719/1/arquivo3072_1.pdfb28a86f3cf1758147db2ac214690331dMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/1719/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo3072_1.pdf.txtarquivo3072_1.pdf.txtExtracted texttext/plain411805https://repositorio.ufpe.br/bitstream/123456789/1719/3/arquivo3072_1.pdf.txt9f85e562ac34ccfe7db8509d5f29852fMD53123456789/17192019-10-25 12:59:22.941oai:repositorio.ufpe.br:123456789/1719Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:59:22Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo
title Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo
spellingShingle Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo
Luis Santiago Maia, André
Análise de séries temporais
Dados do tipo intervalo
Análise de dados simbólicos
Alisamento exponencial
Modelos ARMA e ARIMA
Redes neurais artificiais
title_short Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo
title_full Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo
title_fullStr Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo
title_full_unstemmed Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo
title_sort Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo
author Luis Santiago Maia, André
author_facet Luis Santiago Maia, André
author_role author
dc.contributor.author.fl_str_mv Luis Santiago Maia, André
dc.contributor.advisor1.fl_str_mv de Assis Tenório Carvalho, Francisco
contributor_str_mv de Assis Tenório Carvalho, Francisco
dc.subject.por.fl_str_mv Análise de séries temporais
Dados do tipo intervalo
Análise de dados simbólicos
Alisamento exponencial
Modelos ARMA e ARIMA
Redes neurais artificiais
topic Análise de séries temporais
Dados do tipo intervalo
Análise de dados simbólicos
Alisamento exponencial
Modelos ARMA e ARIMA
Redes neurais artificiais
description Os dados simbólicos apresentam, em sua estrutura, formas interessantes para se transformar grandes bases de dados clássicos em novos conjuntos de dados de tamanho reduzido, facilitando a manipulação e proporcionando novas técnicas de análise dos mesmos. No entanto, mesmo com os recentes avanços promovidos por pesquisadores nesta área, o volume de técnicas de manipulação e, consequentemente, de análise de dados simbólicos (ADS) ainda é incipiente. Uma série temporal do tipo intervalo (STI), no campo de dados simbólicos, pode ser definida como um conjunto de intervalos observados sequencialmente no tempo, em que cada intervalo é descrito por um vetor bidimensional com elementos em IR representados pelo limite superior e pelo limite inferior. O desenvolvimento de técnicas para previsão de STI é uma área de pesquisa muito promissora e os poucos resultados relatados na literatura surgiram muito recentemente. Nesta tese, estendemos técnicas clássicas de análise de séries temporais para descrição, modelagem e previsão de STI no domínio de ADS. Neste contexto, nós apresentamos técnicas para descrição de uma STI, envolvendo cálculo de estatísticas sumárias e representação gráfica dos dados. Na modelagem, apresentamos métodos que consistem na explicação do processo gerador da STI a partir de certo modelo, bem como métodos de estimação de parâmetros e métodos para avaliação da qualidade do modelo, em termos do ajuste
publishDate 2010
dc.date.issued.fl_str_mv 2010-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T15:52:00Z
dc.date.available.fl_str_mv 2014-06-12T15:52:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Luis Santiago Maia, André; de Assis Tenório Carvalho, Francisco. Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo. 2010. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/1719
dc.identifier.dark.fl_str_mv ark:/64986/0013000006nvv
identifier_str_mv Luis Santiago Maia, André; de Assis Tenório Carvalho, Francisco. Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo. 2010. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.
ark:/64986/0013000006nvv
url https://repositorio.ufpe.br/handle/123456789/1719
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/1719/4/arquivo3072_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/1719/1/arquivo3072_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/1719/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/1719/3/arquivo3072_1.pdf.txt
bitstream.checksum.fl_str_mv b4bba8b771c39eecf27f688b2722c44b
b28a86f3cf1758147db2ac214690331d
8a4605be74aa9ea9d79846c1fba20a33
9f85e562ac34ccfe7db8509d5f29852f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172741822676992