Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI

Detalhes bibliográficos
Autor(a) principal: ARAÚJO, Inessa Racine Gomes de
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000wrw8
Texto Completo: https://repositorio.ufpe.br/handle/123456789/39702
Resumo: Droughts are one of the most common natural hazards in the world that can affect social and economic aspects. The objectives of this dissertation is: (i) to characterize agricultural drought on Brazilian soybeans producing areas in terms of frequency and severity, during 1983-2016 period, through precipitation anomalies and ENSO Precipitation Index (ESPI) event; (ii) establish the degree of significance between Normalized Difference Vegetation Index (NDVI) and precipitation and (iii) assess the impacts on production drought months with critical soybean yield periods. The data used are NDVI, using the AVHRR and MODIS sensors, monthly precipitation data from the soybean producing states, soybean production data and ESPI events. The methods consist of using the percentiles in conjunction with the time series analysis, the lower threshold percentile of 25% was calculated and 75% represented the highest threshold. The thresholds values are plotted in the time series, identifying extreme dryness and wetness as the two categories. The results of the anomalies pointed out the pluviometric variability throughout Brazil, registering events considered extremely dryness, during consecutive years (1985, 1989, 1990, 1991, 1994, 1995, 1999, 2001, 2002, 2005, 2007, 2011, 2012 and 2015). It is possible to observe that precipitation anomalies followed moderately to soybean production. Then, the precipitation anomalies are correlated with NDVI to demonstrate the efficiency of the index for each soybean production state. The year 2012 recorded the lowest NDVI value, reaching 0.53 and the precipitation anomaly was -0.91, in which it can be observed that the NDVI values are correlated with precipitation. It is compared the years of negative precipitation anomalies under the ESPI phenomenon, it is possible to observe that whenever ESPI obtains negative values it generates significant changes in precipitation patterns. Thus, this research is important for Brazil, as it provides alternatives to monitor and evaluate the impacts of agricultural drought on soybean production.
id UFPE_3acbeaf4c99d85f51941e3f664c26afd
oai_identifier_str oai:repositorio.ufpe.br:123456789/39702
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ARAÚJO, Inessa Racine Gomes dehttp://lattes.cnpq.br/5725362131428571http://lattes.cnpq.br/2283319786776203http://lattes.cnpq.br/4763821945825516GONÇALVES, Rodrigo MikoszAWANGE, Joseph2021-04-13T14:11:00Z2021-04-13T14:11:00Z2019-09-02ARAÚJO, Inessa Racine Gomes de. Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI. 2019. Dissertação (Mestrado em Ciências Geodésicas e Tecnologias da Geoinformação) - Universidade Federal de Pernambuco, Recife, 2019.https://repositorio.ufpe.br/handle/123456789/39702ark:/64986/001300000wrw8Droughts are one of the most common natural hazards in the world that can affect social and economic aspects. The objectives of this dissertation is: (i) to characterize agricultural drought on Brazilian soybeans producing areas in terms of frequency and severity, during 1983-2016 period, through precipitation anomalies and ENSO Precipitation Index (ESPI) event; (ii) establish the degree of significance between Normalized Difference Vegetation Index (NDVI) and precipitation and (iii) assess the impacts on production drought months with critical soybean yield periods. The data used are NDVI, using the AVHRR and MODIS sensors, monthly precipitation data from the soybean producing states, soybean production data and ESPI events. The methods consist of using the percentiles in conjunction with the time series analysis, the lower threshold percentile of 25% was calculated and 75% represented the highest threshold. The thresholds values are plotted in the time series, identifying extreme dryness and wetness as the two categories. The results of the anomalies pointed out the pluviometric variability throughout Brazil, registering events considered extremely dryness, during consecutive years (1985, 1989, 1990, 1991, 1994, 1995, 1999, 2001, 2002, 2005, 2007, 2011, 2012 and 2015). It is possible to observe that precipitation anomalies followed moderately to soybean production. Then, the precipitation anomalies are correlated with NDVI to demonstrate the efficiency of the index for each soybean production state. The year 2012 recorded the lowest NDVI value, reaching 0.53 and the precipitation anomaly was -0.91, in which it can be observed that the NDVI values are correlated with precipitation. It is compared the years of negative precipitation anomalies under the ESPI phenomenon, it is possible to observe that whenever ESPI obtains negative values it generates significant changes in precipitation patterns. Thus, this research is important for Brazil, as it provides alternatives to monitor and evaluate the impacts of agricultural drought on soybean production.CAPESAs secas são um dos riscos naturais mais comuns no mundo que podem afetar aspectos sociais e econômicos. Os objetivos desta dissertação são (i) caracterizar a seca agrícola nas áreas produtoras de soja do Brasil em termos de frequência e gravidade, durante o período 1983-2016, através de anomalias de precipitação e Índice de Precipitação (ESPI) (ii) estabelecer o grau de significância entre o Índice de Vegetação por Diferença Normalizada (NDVI) e as anomalias de precipitação (iii) avaliar os impactos na produção dos meses de seca com os períodos críticos de produtividade da soja. Os dados utilizados são o NDVI, utilizando os sensores AVHRR e MODIS, os dados mensais de precipitação dos estados produtores de soja, os dados de produção de soja e dos eventos do ESPI. Os métodos consistem em utilizar os percentis em conjunto com a análise de séries temporais, foi calculado o percentil do limiar inferior de 25% e 75% representou o limiar superior. O valor limite foi então plotado na série temporal, identificando seca extrema e umidade como as duas categorias. Os resultados das anomalias apontam para a existência de grande variabilidade pluviométrica em todo o Brasil, registrando eventos considerados extremamente secos, durante anos consecutivos (1985, 1989, 1990, 1991, 1994, 1995, 1999, 2001, 2002, 2005, 2007, 2011, 2012 e 2015), foi possível observar que as anomalias de precipitação responderam moderadamente à produção de soja. Em seguida as anomalias de precipitação foram correlacionadas com NDVI para demonstrar a eficiência do índice, os valores analisados correspondem à localização da produção de soja para cada Estado. O ano de 2012 registrou o menor valor de NDVI, chegando a 0,53 e a anomalia de precipitação foi de -0,91, no qual pode-se observar que os valores de NDVI responderam bem à precipitação. Foram comparados os anos de anomalias de precipitação negativas sob a influência do fenômeno ESPI, sendo possível observar que sempre que o ESPI obtém valores negativos gera mudanças significativas nos padrões de precipitação. Assim, esta pesquisa é importante para o Brasil, pois fornecem alternativas para monitorar e avaliar os impactos da seca agrícola na produção de soja.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencias Geodesicas e Tecnologias da GeoinformacaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCiências geodésicas e tecnologias da geoinformaçãoAnomalias de precipitaçãoNDVISecaSojaDetection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPIinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Inessa Racine Gomes de Araújo.pdfDISSERTAÇÃO Inessa Racine Gomes de Araújo.pdfapplication/pdf2021420https://repositorio.ufpe.br/bitstream/123456789/39702/1/DISSERTA%c3%87%c3%83O%20Inessa%20Racine%20Gomes%20de%20Ara%c3%bajo.pdf847cd3397e0116a3b4303b7aecbf0153MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/39702/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/39702/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTDISSERTAÇÃO Inessa Racine Gomes de Araújo.pdf.txtDISSERTAÇÃO Inessa Racine Gomes de Araújo.pdf.txtExtracted texttext/plain102543https://repositorio.ufpe.br/bitstream/123456789/39702/4/DISSERTA%c3%87%c3%83O%20Inessa%20Racine%20Gomes%20de%20Ara%c3%bajo.pdf.txte7264446f51c4148988a850b3c9e6816MD54THUMBNAILDISSERTAÇÃO Inessa Racine Gomes de Araújo.pdf.jpgDISSERTAÇÃO Inessa Racine Gomes de Araújo.pdf.jpgGenerated Thumbnailimage/jpeg1278https://repositorio.ufpe.br/bitstream/123456789/39702/5/DISSERTA%c3%87%c3%83O%20Inessa%20Racine%20Gomes%20de%20Ara%c3%bajo.pdf.jpgda561b99b15728540542938bd697e495MD55123456789/397022021-04-14 02:16:01.589oai:repositorio.ufpe.br:123456789/39702TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212021-04-14T05:16:01Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI
title Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI
spellingShingle Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI
ARAÚJO, Inessa Racine Gomes de
Ciências geodésicas e tecnologias da geoinformação
Anomalias de precipitação
NDVI
Seca
Soja
title_short Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI
title_full Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI
title_fullStr Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI
title_full_unstemmed Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI
title_sort Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI
author ARAÚJO, Inessa Racine Gomes de
author_facet ARAÚJO, Inessa Racine Gomes de
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5725362131428571
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2283319786776203
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4763821945825516
dc.contributor.author.fl_str_mv ARAÚJO, Inessa Racine Gomes de
dc.contributor.advisor1.fl_str_mv GONÇALVES, Rodrigo Mikosz
dc.contributor.advisor-co1.fl_str_mv AWANGE, Joseph
contributor_str_mv GONÇALVES, Rodrigo Mikosz
AWANGE, Joseph
dc.subject.por.fl_str_mv Ciências geodésicas e tecnologias da geoinformação
Anomalias de precipitação
NDVI
Seca
Soja
topic Ciências geodésicas e tecnologias da geoinformação
Anomalias de precipitação
NDVI
Seca
Soja
description Droughts are one of the most common natural hazards in the world that can affect social and economic aspects. The objectives of this dissertation is: (i) to characterize agricultural drought on Brazilian soybeans producing areas in terms of frequency and severity, during 1983-2016 period, through precipitation anomalies and ENSO Precipitation Index (ESPI) event; (ii) establish the degree of significance between Normalized Difference Vegetation Index (NDVI) and precipitation and (iii) assess the impacts on production drought months with critical soybean yield periods. The data used are NDVI, using the AVHRR and MODIS sensors, monthly precipitation data from the soybean producing states, soybean production data and ESPI events. The methods consist of using the percentiles in conjunction with the time series analysis, the lower threshold percentile of 25% was calculated and 75% represented the highest threshold. The thresholds values are plotted in the time series, identifying extreme dryness and wetness as the two categories. The results of the anomalies pointed out the pluviometric variability throughout Brazil, registering events considered extremely dryness, during consecutive years (1985, 1989, 1990, 1991, 1994, 1995, 1999, 2001, 2002, 2005, 2007, 2011, 2012 and 2015). It is possible to observe that precipitation anomalies followed moderately to soybean production. Then, the precipitation anomalies are correlated with NDVI to demonstrate the efficiency of the index for each soybean production state. The year 2012 recorded the lowest NDVI value, reaching 0.53 and the precipitation anomaly was -0.91, in which it can be observed that the NDVI values are correlated with precipitation. It is compared the years of negative precipitation anomalies under the ESPI phenomenon, it is possible to observe that whenever ESPI obtains negative values it generates significant changes in precipitation patterns. Thus, this research is important for Brazil, as it provides alternatives to monitor and evaluate the impacts of agricultural drought on soybean production.
publishDate 2019
dc.date.issued.fl_str_mv 2019-09-02
dc.date.accessioned.fl_str_mv 2021-04-13T14:11:00Z
dc.date.available.fl_str_mv 2021-04-13T14:11:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ARAÚJO, Inessa Racine Gomes de. Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI. 2019. Dissertação (Mestrado em Ciências Geodésicas e Tecnologias da Geoinformação) - Universidade Federal de Pernambuco, Recife, 2019.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/39702
dc.identifier.dark.fl_str_mv ark:/64986/001300000wrw8
identifier_str_mv ARAÚJO, Inessa Racine Gomes de. Detection of agricultural drought impacts on soybeans production in Brazil (1983-2016) using precipitation anomalies, NDVI and ESPI. 2019. Dissertação (Mestrado em Ciências Geodésicas e Tecnologias da Geoinformação) - Universidade Federal de Pernambuco, Recife, 2019.
ark:/64986/001300000wrw8
url https://repositorio.ufpe.br/handle/123456789/39702
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencias Geodesicas e Tecnologias da Geoinformacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/39702/1/DISSERTA%c3%87%c3%83O%20Inessa%20Racine%20Gomes%20de%20Ara%c3%bajo.pdf
https://repositorio.ufpe.br/bitstream/123456789/39702/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/39702/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/39702/4/DISSERTA%c3%87%c3%83O%20Inessa%20Racine%20Gomes%20de%20Ara%c3%bajo.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/39702/5/DISSERTA%c3%87%c3%83O%20Inessa%20Racine%20Gomes%20de%20Ara%c3%bajo.pdf.jpg
bitstream.checksum.fl_str_mv 847cd3397e0116a3b4303b7aecbf0153
e39d27027a6cc9cb039ad269a5db8e34
bd573a5ca8288eb7272482765f819534
e7264446f51c4148988a850b3c9e6816
da561b99b15728540542938bd697e495
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172937166094336