Essays on double bounded time series analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000c6bp |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/44682 |
Resumo: | Two important steps in time series analysis are model selection and diagnostic analysis. We address the issue of performing diagnostic analysis through portmanteau testing inferences using time series data that assume values in the standard unit interval. Our focus lies in the class of beta autoregressive moving average (βARMA) models. In particular, we wish to test the goodness-of-fit of such models. We consider several testing criteria that have been proposed for Gaussian time series models and two new tests that were recently introduced in the literature. We derive the asymptotic null distribution of the two new test statistics in two different scenarios, namely: when the tests are applied to an observed time series and when they are applied to residuals from a fitted βARMA model. It is worth noticing that our results imply the asymptotic validity of standard portmanteau tests in the class of βARMA models that are, under the null hypothesis, asymptotically equivalent to the two new tests. We use Monte Carlo simulation to assess the relative merits of the different portmanteau tests when used with fitted βARMA. The simulation results we present show that the new tests are typically more powerful than a well known test whose test statistic is also based on residual partial autocorrelations. Overall, the two new tests perform quite well. We also model the dynamics of the proportion of stored hydroelectric energy in South of Brazil. The results show that the βARMA model outperforms three alternative models and an exponential smoothing algorithm. We also consider the issue of performing model selection with double bounded time series. We evaluate the effectiveness of βARMA model selection strategies based on different information criteria. The numerical evidence for autoregressive, moving average, and mixed autoregressive and moving average models shows that, overall, a bootstrap-based model selection criterion is the best performer. An empirical application which we present and discuss shows that the most accurate out-of-sample forecasts are obtained using bootstrap-based model selection. The βARMA model is tailored for use with fractional time series, i.e., time series that assume values in (0,1). We introduce a generalization of the model in which both the conditional mean and the conditional precision evolve over time. The standard βARMA model, in which precision is constant, is a particular case of our model. The more general formulation of the model includes a parsimonious submodel for the precision parameter. We present the model log-likelihood function, the score function, and Fisher’s information matrix. We use the proposed model to forecast future levels of stored hydrolectric energy in the South of Brazil. Our results show that more accurate forecasts are typically obtained by allowing the precision parameter to evolve over time. |
id |
UFPE_41c350e09686792e78e6f95034f1b761 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/44682 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SCHER, Vinícius Teodorohttp://lattes.cnpq.br/4070051558427877http://lattes.cnpq.br/2225977664095899http://lattes.cnpq.br/9904863693302949CRIBARI NETO, FranciscoBAYER, Fábio Mariano2022-06-08T19:54:49Z2022-06-08T19:54:49Z2022-02-18SCHER, Vinícius Teodoro. Essays on double bounded time series analysis. 2022. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/44682ark:/64986/001300000c6bpTwo important steps in time series analysis are model selection and diagnostic analysis. We address the issue of performing diagnostic analysis through portmanteau testing inferences using time series data that assume values in the standard unit interval. Our focus lies in the class of beta autoregressive moving average (βARMA) models. In particular, we wish to test the goodness-of-fit of such models. We consider several testing criteria that have been proposed for Gaussian time series models and two new tests that were recently introduced in the literature. We derive the asymptotic null distribution of the two new test statistics in two different scenarios, namely: when the tests are applied to an observed time series and when they are applied to residuals from a fitted βARMA model. It is worth noticing that our results imply the asymptotic validity of standard portmanteau tests in the class of βARMA models that are, under the null hypothesis, asymptotically equivalent to the two new tests. We use Monte Carlo simulation to assess the relative merits of the different portmanteau tests when used with fitted βARMA. The simulation results we present show that the new tests are typically more powerful than a well known test whose test statistic is also based on residual partial autocorrelations. Overall, the two new tests perform quite well. We also model the dynamics of the proportion of stored hydroelectric energy in South of Brazil. The results show that the βARMA model outperforms three alternative models and an exponential smoothing algorithm. We also consider the issue of performing model selection with double bounded time series. We evaluate the effectiveness of βARMA model selection strategies based on different information criteria. The numerical evidence for autoregressive, moving average, and mixed autoregressive and moving average models shows that, overall, a bootstrap-based model selection criterion is the best performer. An empirical application which we present and discuss shows that the most accurate out-of-sample forecasts are obtained using bootstrap-based model selection. The βARMA model is tailored for use with fractional time series, i.e., time series that assume values in (0,1). We introduce a generalization of the model in which both the conditional mean and the conditional precision evolve over time. The standard βARMA model, in which precision is constant, is a particular case of our model. The more general formulation of the model includes a parsimonious submodel for the precision parameter. We present the model log-likelihood function, the score function, and Fisher’s information matrix. We use the proposed model to forecast future levels of stored hydrolectric energy in the South of Brazil. Our results show that more accurate forecasts are typically obtained by allowing the precision parameter to evolve over time.FACEPEDuas etapas importantes na modelagem de séries temporais são seleção de modelos e análise de diagnóstico. No que diz respeito à análise de diagnóstico, nós abordamos a realização de inferências via testes portmanteau utilizando séries temporais que assu- mem valores no intervalo da unitário padrão. Nosso foco reside na classe de modelos beta autorregressivos e de médias móveis (βARMA). Em particular, desejamos testar a adequacidade de tais modelos. Nós consideramos diversos testes que foram propostos para modelos de séries temporais gaussianas e dois novos testes recentemente introduzidos na literatura. Derivamos a distribuição nula assintótica das duas novas estatísticas de teste em dois cenários diferentes, a saber: quando os testes são aplicados a uma série temporal observada e quando são aplicados a resíduos de um modelo βARMA. Vale a pena notar que nossos resultados implicam a validade assintótica dos testes portmanteau padrão na classe de modelos βARMA que são, sob hipótese nula, assintoticamente equi- valente aos dois novos testes. Usamos simulação de Monte Carlo para avaliar os méritos relativos dos diferentes testes portmanteau quando usados conjuntamente com o modelo βARMA. Os resultados de simulação que apresentamos mostram que os novos testes são tipicamente mais poderosos que um teste bem conhecido, cuja estatística de teste também é baseada em autocorrelações parciais dos resíduos. No geral, os dois novos testes funcionam muito bem. Adicionalmente, modelamos a dinâmica da proporção de energia hidrelétrica armazenada no sul do Brasil. Os resultados mostram que o modelo βARMA supera três modelos alternativos e um algoritmo de suavização exponencial. Num segundo estudo, avaliamos a eficácia de estratégias de seleção de modelos com base em diferentes critérios de informação no modelo βARMA. A evidência numérica para modelos autorregressivos, de médias móveis e mistos (autorregressivos e de médias móveis) mostra que, em geral, um critério de seleção de modelos baseado em bootstrap apresenta o melhor desempenho. Nossa aplicação empírica mostra que as previsões mais precisas são obtidas usando seleção de modelo baseada em bootstrap. O modelo βARMA é adequado para uso com séries temporais fracionárias, ou seja, séries temporais que assumem valores em (0,1). Nós propomos uma generalização do modelo em que tanto a média condicional quanto a precisão condicional evoluem ao longo do tempo. O modelo βARMA padrão, em que a precisão é constante, é um caso particular do nosso modelo. A formulação mais geral do modelo inclui um submodelo parcimonioso para o parâmetro de precisão. Apresentamos a função de log-verossimilhança do modelo, a função escore e a matriz de informação de Fisher. Utilizamos o modelo proposto para prever níveis futuros de energia hidroelétrica armazenada no Sul do Brasil. Nossos resultados mostram que previsões mais precisas são obtidas ao se permitir que o parâmetro de precisão evolua ao longo do tempo.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessEstatística matemáticaβARMABootstrapSimulação de Monte CarloTestes portmanteauEssays on double bounded time series analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/44682/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/44682/3/license.txt6928b9260b07fb2755249a5ca9903395MD53ORIGINALTESE Vinícius Teodoro Scher.pdfTESE Vinícius Teodoro Scher.pdfapplication/pdf1384029https://repositorio.ufpe.br/bitstream/123456789/44682/1/TESE%20Vin%c3%adcius%20Teodoro%20Scher.pdf9f222e6c701306ac08df6244b1ca8df2MD51TEXTTESE Vinícius Teodoro Scher.pdf.txtTESE Vinícius Teodoro Scher.pdf.txtExtracted texttext/plain191715https://repositorio.ufpe.br/bitstream/123456789/44682/4/TESE%20Vin%c3%adcius%20Teodoro%20Scher.pdf.txtf886b2a810d9b6e133e8ce4601249fcaMD54THUMBNAILTESE Vinícius Teodoro Scher.pdf.jpgTESE Vinícius Teodoro Scher.pdf.jpgGenerated Thumbnailimage/jpeg1223https://repositorio.ufpe.br/bitstream/123456789/44682/5/TESE%20Vin%c3%adcius%20Teodoro%20Scher.pdf.jpgcc6801184fc9689d42538dffd0f4f3d6MD55123456789/446822022-06-09 02:20:40.455oai:repositorio.ufpe.br:123456789/44682VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-06-09T05:20:40Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Essays on double bounded time series analysis |
title |
Essays on double bounded time series analysis |
spellingShingle |
Essays on double bounded time series analysis SCHER, Vinícius Teodoro Estatística matemática βARMA Bootstrap Simulação de Monte Carlo Testes portmanteau |
title_short |
Essays on double bounded time series analysis |
title_full |
Essays on double bounded time series analysis |
title_fullStr |
Essays on double bounded time series analysis |
title_full_unstemmed |
Essays on double bounded time series analysis |
title_sort |
Essays on double bounded time series analysis |
author |
SCHER, Vinícius Teodoro |
author_facet |
SCHER, Vinícius Teodoro |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/4070051558427877 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/2225977664095899 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9904863693302949 |
dc.contributor.author.fl_str_mv |
SCHER, Vinícius Teodoro |
dc.contributor.advisor1.fl_str_mv |
CRIBARI NETO, Francisco |
dc.contributor.advisor-co1.fl_str_mv |
BAYER, Fábio Mariano |
contributor_str_mv |
CRIBARI NETO, Francisco BAYER, Fábio Mariano |
dc.subject.por.fl_str_mv |
Estatística matemática βARMA Bootstrap Simulação de Monte Carlo Testes portmanteau |
topic |
Estatística matemática βARMA Bootstrap Simulação de Monte Carlo Testes portmanteau |
description |
Two important steps in time series analysis are model selection and diagnostic analysis. We address the issue of performing diagnostic analysis through portmanteau testing inferences using time series data that assume values in the standard unit interval. Our focus lies in the class of beta autoregressive moving average (βARMA) models. In particular, we wish to test the goodness-of-fit of such models. We consider several testing criteria that have been proposed for Gaussian time series models and two new tests that were recently introduced in the literature. We derive the asymptotic null distribution of the two new test statistics in two different scenarios, namely: when the tests are applied to an observed time series and when they are applied to residuals from a fitted βARMA model. It is worth noticing that our results imply the asymptotic validity of standard portmanteau tests in the class of βARMA models that are, under the null hypothesis, asymptotically equivalent to the two new tests. We use Monte Carlo simulation to assess the relative merits of the different portmanteau tests when used with fitted βARMA. The simulation results we present show that the new tests are typically more powerful than a well known test whose test statistic is also based on residual partial autocorrelations. Overall, the two new tests perform quite well. We also model the dynamics of the proportion of stored hydroelectric energy in South of Brazil. The results show that the βARMA model outperforms three alternative models and an exponential smoothing algorithm. We also consider the issue of performing model selection with double bounded time series. We evaluate the effectiveness of βARMA model selection strategies based on different information criteria. The numerical evidence for autoregressive, moving average, and mixed autoregressive and moving average models shows that, overall, a bootstrap-based model selection criterion is the best performer. An empirical application which we present and discuss shows that the most accurate out-of-sample forecasts are obtained using bootstrap-based model selection. The βARMA model is tailored for use with fractional time series, i.e., time series that assume values in (0,1). We introduce a generalization of the model in which both the conditional mean and the conditional precision evolve over time. The standard βARMA model, in which precision is constant, is a particular case of our model. The more general formulation of the model includes a parsimonious submodel for the precision parameter. We present the model log-likelihood function, the score function, and Fisher’s information matrix. We use the proposed model to forecast future levels of stored hydrolectric energy in the South of Brazil. Our results show that more accurate forecasts are typically obtained by allowing the precision parameter to evolve over time. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-06-08T19:54:49Z |
dc.date.available.fl_str_mv |
2022-06-08T19:54:49Z |
dc.date.issued.fl_str_mv |
2022-02-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SCHER, Vinícius Teodoro. Essays on double bounded time series analysis. 2022. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/44682 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000c6bp |
identifier_str_mv |
SCHER, Vinícius Teodoro. Essays on double bounded time series analysis. 2022. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/001300000c6bp |
url |
https://repositorio.ufpe.br/handle/123456789/44682 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Estatistica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/44682/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/44682/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/44682/1/TESE%20Vin%c3%adcius%20Teodoro%20Scher.pdf https://repositorio.ufpe.br/bitstream/123456789/44682/4/TESE%20Vin%c3%adcius%20Teodoro%20Scher.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/44682/5/TESE%20Vin%c3%adcius%20Teodoro%20Scher.pdf.jpg |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 6928b9260b07fb2755249a5ca9903395 9f222e6c701306ac08df6244b1ca8df2 f886b2a810d9b6e133e8ce4601249fca cc6801184fc9689d42538dffd0f4f3d6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172785983455232 |