Transverse optical phenomena with Gaussian beams and optical vortices

Detalhes bibliográficos
Autor(a) principal: AMARAL, Anderson Monteiro
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000013ffr
Texto Completo: https://repositorio.ufpe.br/handle/123456789/18646
Resumo: In this thesis are presented various results regarding the transverse structure of light beams in the paraxial propagation regime, with a special concern with singularities in the transverse profile and in nonlinear optics applications. Theoretical and experimental tools were developed for the study of Optical Vortices (OV) and its most important characteristics, as the Orbital Angular Momentum (OAM) and the Topological Charge (TC). In a first step, we theoretically described and experimentally demonstrated that it is possible to shape the intensity profile of a beam containing OV by distributing TC over the plane transverse to the propagation direction [1]. The TC is associated with a phase singularity that implies in points of zero intensity. By distributing the TC on the transverse plane, it is possible to shape the beam dark region and also the OAM profile with the goal of optimizing the light beam for a given application. However, a problem identified in [1] was that most of the current available techniques to characterize OAM light implicitly assume that the beam has cylindrical symmetry, thus being inadequate to characterize fields resulting from more general TC distributions. These problems were approached in a second work [2], where it was shown that by measuring the field transverse amplitude and phase profiles it is possible to measure the OAM and the TC in TC distributions with arbitrary geometries. By combination of the results [1] and [2] it is possible to optimize and characterize the TC distributions for given applications, as for example by designing the transverse forces in an optical tweezer for microparticle manipulation. An important theoretical unfold during these works was the identification of an analogous relation between the field transverse phase in a TC distribution with the Coulomb potential in two-dimensional electrostatics. We then introduced in [3] the Topological Potential (TP) concept which allows the design of structured optical beams with complex spatial profiles inspired by two-dimensional electrostatics analogies. The TP can be used to describe a broad class of TC distributions, as those from [1,2] or the more sophisticate examples in [3]. In another set of results, it is discussed the possibility of using concepts and the formalism of quantum mechanics to solve light propagation problems in the classical approximation. Among the results obtained, it should be remarked that the formalism obtained has a simple and direct relation with ABCD matrices and ray optics [4]. These results were used to understand light propagation in systems containing nonlinear materials, as in SLIM [5] and D4σ [6] techniques. In [5, 6] the theoretical results were compared with experimental data obtained from standard samples, as carbon dissulfide (CS2), acetone and fused silica. It was obtained a very good agreement between the measured optical nonlinearities and the results established in literature for these materials.
id UFPE_43c1dc00d2cdc1de50799f9e0caf4f9b
oai_identifier_str oai:repositorio.ufpe.br:123456789/18646
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling AMARAL, Anderson Monteirohttp://lattes.cnpq.br/1832322110328811http://lattes.cnpq.br/7109489698613515ARAÚJO, Bartolomeu de2017-04-26T16:56:47Z2017-04-26T16:56:47Z2016-02-29https://repositorio.ufpe.br/handle/123456789/18646ark:/64986/0013000013ffrIn this thesis are presented various results regarding the transverse structure of light beams in the paraxial propagation regime, with a special concern with singularities in the transverse profile and in nonlinear optics applications. Theoretical and experimental tools were developed for the study of Optical Vortices (OV) and its most important characteristics, as the Orbital Angular Momentum (OAM) and the Topological Charge (TC). In a first step, we theoretically described and experimentally demonstrated that it is possible to shape the intensity profile of a beam containing OV by distributing TC over the plane transverse to the propagation direction [1]. The TC is associated with a phase singularity that implies in points of zero intensity. By distributing the TC on the transverse plane, it is possible to shape the beam dark region and also the OAM profile with the goal of optimizing the light beam for a given application. However, a problem identified in [1] was that most of the current available techniques to characterize OAM light implicitly assume that the beam has cylindrical symmetry, thus being inadequate to characterize fields resulting from more general TC distributions. These problems were approached in a second work [2], where it was shown that by measuring the field transverse amplitude and phase profiles it is possible to measure the OAM and the TC in TC distributions with arbitrary geometries. By combination of the results [1] and [2] it is possible to optimize and characterize the TC distributions for given applications, as for example by designing the transverse forces in an optical tweezer for microparticle manipulation. An important theoretical unfold during these works was the identification of an analogous relation between the field transverse phase in a TC distribution with the Coulomb potential in two-dimensional electrostatics. We then introduced in [3] the Topological Potential (TP) concept which allows the design of structured optical beams with complex spatial profiles inspired by two-dimensional electrostatics analogies. The TP can be used to describe a broad class of TC distributions, as those from [1,2] or the more sophisticate examples in [3]. In another set of results, it is discussed the possibility of using concepts and the formalism of quantum mechanics to solve light propagation problems in the classical approximation. Among the results obtained, it should be remarked that the formalism obtained has a simple and direct relation with ABCD matrices and ray optics [4]. These results were used to understand light propagation in systems containing nonlinear materials, as in SLIM [5] and D4σ [6] techniques. In [5, 6] the theoretical results were compared with experimental data obtained from standard samples, as carbon dissulfide (CS2), acetone and fused silica. It was obtained a very good agreement between the measured optical nonlinearities and the results established in literature for these materials.CNPQNesta tese são apresentados resultados relacionados com a estrutura transversal de feixes de luz no regime paraxial de propagação, com uma atenção especial em singularidades no perfil transversal e em aplicações para óptica não linear. Foram desenvolvidas ferramentas teóricas e experimentais para o estudo de vórtices ópticos (Optical Vortices - OVs), e suas características mais importantes, como o momento angular orbital (Orbital Angular Momentum - OAM) e a carga topológica (Topological Charge - TC). Inicialmente, foi teoricamente descrito e experimentalmente demonstrado como é possível moldar o perfil de intensidade de um feixe contendo OVs usando uma distribuição de TC sobre o plano transversal à direção de propagação [1]. A TC está associada a uma singularidade na fase, o que implica em um zero de intensidade. Ao se distribuir a TC sobre o plano transversal, é possível moldar o formato da região de intensidade nula e também o perfil de OAM no intuito de otimizar o feixe para uma dada aplicação. No entanto, um problema identificado neste trabalho é que a maior parte das técnicas de caracterização disponíveis para luz com OAM implicitamente supunham que o feixe possui simetria cilíndrica, e portanto não eram adequadas para caracterizar campos obtidos a partir de distribuições de TC com geometrias mais gerais. Tais problemas foram abordados em um segundo trabalho [2], onde foi mostrado que por meio de medições dos perfis transversais de amplitude e fase do campo elétrico é possível medir o OAM e a TC em distribuições de TC com formas geométricas arbitrárias. A união dos trabalhos [1] e [2] permite então que as distribuições de TC possam ser adequadamente otimizadas e caracterizadas para aplicações específicas, como por exemplo ao moldar as forças transversais numa pinça óptica para a manipulação de micropartículas. Um desdobramento teórico importante obtido foi identificar uma relação análoga entre o perfil de fase em uma distribuição de TC com o potencial de Coulomb em eletrostática bidimensional. Foi então introduzido em [3] o conceito de potencial topológico (Topological Potential - TP) que possibilita a construção de feixes ópticos estruturados com perfis espaciais complexos inspirados em analogias com eletrostática bidimensional. O TP pode ser usado na descrição de uma grande variedade de distribuições de TC, como nos feixes em [1, 2] ou nos exemplos mais sofisticados em [3]. Posteriormente, é discutida a possibilidade de se utilizar conceitos e o formalismo da mecânica quântica na solução de problemas de propagação da luz descrita na aproximação clássica. Dentre os resultados obtidos, destaca-se que o formalismo possui uma relação simples e direta com as matrizes ABCD e a óptica de raios [4]. Estes resultados foram utilizados na compreensão da propagação da luz em sistemas contendo materiais não lineares, como nas técnicas SLIM [5] e D4σ[6]. Nos trabalhos [5,6] os resultados teóricos foram comparados com dados experimentais obtidos em amostras padrão, como dissulfeto de carbono (CS2), acetona e sílica fundida. Foi obtida uma concordância muito boa entre os valores medidos para as não linearidades ópticas nestes materiais e os valores estabelecidos na literatura.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessÓptica singular. Momento angular orbital da luz. Frente de onda da luz. Holografia. Óptica não linear. Óptica física.Singular optics. Light orbital angular momentum. Optical wavefront. Holography. Nonlinear optics. Physical optics.Transverse optical phenomena with Gaussian beams and optical vorticesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTese_Anderson_Amaral.pdf.jpgTese_Anderson_Amaral.pdf.jpgGenerated Thumbnailimage/jpeg1232https://repositorio.ufpe.br/bitstream/123456789/18646/5/Tese_Anderson_Amaral.pdf.jpg8002fc403b7969018ce41b737bb5262aMD55ORIGINALTese_Anderson_Amaral.pdfTese_Anderson_Amaral.pdfapplication/pdf6016426https://repositorio.ufpe.br/bitstream/123456789/18646/1/Tese_Anderson_Amaral.pdfd9633b708d004572ce2495387f757089MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/18646/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/18646/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTese_Anderson_Amaral.pdf.txtTese_Anderson_Amaral.pdf.txtExtracted texttext/plain377876https://repositorio.ufpe.br/bitstream/123456789/18646/4/Tese_Anderson_Amaral.pdf.txt563ff4ca69b72caf6f0bf0f2a993708bMD54123456789/186462019-10-25 04:47:44.153oai:repositorio.ufpe.br:123456789/18646TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:47:44Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Transverse optical phenomena with Gaussian beams and optical vortices
title Transverse optical phenomena with Gaussian beams and optical vortices
spellingShingle Transverse optical phenomena with Gaussian beams and optical vortices
AMARAL, Anderson Monteiro
Óptica singular. Momento angular orbital da luz. Frente de onda da luz. Holografia. Óptica não linear. Óptica física.
Singular optics. Light orbital angular momentum. Optical wavefront. Holography. Nonlinear optics. Physical optics.
title_short Transverse optical phenomena with Gaussian beams and optical vortices
title_full Transverse optical phenomena with Gaussian beams and optical vortices
title_fullStr Transverse optical phenomena with Gaussian beams and optical vortices
title_full_unstemmed Transverse optical phenomena with Gaussian beams and optical vortices
title_sort Transverse optical phenomena with Gaussian beams and optical vortices
author AMARAL, Anderson Monteiro
author_facet AMARAL, Anderson Monteiro
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1832322110328811
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7109489698613515
dc.contributor.author.fl_str_mv AMARAL, Anderson Monteiro
dc.contributor.advisor1.fl_str_mv ARAÚJO, Bartolomeu de
contributor_str_mv ARAÚJO, Bartolomeu de
dc.subject.por.fl_str_mv Óptica singular. Momento angular orbital da luz. Frente de onda da luz. Holografia. Óptica não linear. Óptica física.
Singular optics. Light orbital angular momentum. Optical wavefront. Holography. Nonlinear optics. Physical optics.
topic Óptica singular. Momento angular orbital da luz. Frente de onda da luz. Holografia. Óptica não linear. Óptica física.
Singular optics. Light orbital angular momentum. Optical wavefront. Holography. Nonlinear optics. Physical optics.
description In this thesis are presented various results regarding the transverse structure of light beams in the paraxial propagation regime, with a special concern with singularities in the transverse profile and in nonlinear optics applications. Theoretical and experimental tools were developed for the study of Optical Vortices (OV) and its most important characteristics, as the Orbital Angular Momentum (OAM) and the Topological Charge (TC). In a first step, we theoretically described and experimentally demonstrated that it is possible to shape the intensity profile of a beam containing OV by distributing TC over the plane transverse to the propagation direction [1]. The TC is associated with a phase singularity that implies in points of zero intensity. By distributing the TC on the transverse plane, it is possible to shape the beam dark region and also the OAM profile with the goal of optimizing the light beam for a given application. However, a problem identified in [1] was that most of the current available techniques to characterize OAM light implicitly assume that the beam has cylindrical symmetry, thus being inadequate to characterize fields resulting from more general TC distributions. These problems were approached in a second work [2], where it was shown that by measuring the field transverse amplitude and phase profiles it is possible to measure the OAM and the TC in TC distributions with arbitrary geometries. By combination of the results [1] and [2] it is possible to optimize and characterize the TC distributions for given applications, as for example by designing the transverse forces in an optical tweezer for microparticle manipulation. An important theoretical unfold during these works was the identification of an analogous relation between the field transverse phase in a TC distribution with the Coulomb potential in two-dimensional electrostatics. We then introduced in [3] the Topological Potential (TP) concept which allows the design of structured optical beams with complex spatial profiles inspired by two-dimensional electrostatics analogies. The TP can be used to describe a broad class of TC distributions, as those from [1,2] or the more sophisticate examples in [3]. In another set of results, it is discussed the possibility of using concepts and the formalism of quantum mechanics to solve light propagation problems in the classical approximation. Among the results obtained, it should be remarked that the formalism obtained has a simple and direct relation with ABCD matrices and ray optics [4]. These results were used to understand light propagation in systems containing nonlinear materials, as in SLIM [5] and D4σ [6] techniques. In [5, 6] the theoretical results were compared with experimental data obtained from standard samples, as carbon dissulfide (CS2), acetone and fused silica. It was obtained a very good agreement between the measured optical nonlinearities and the results established in literature for these materials.
publishDate 2016
dc.date.issued.fl_str_mv 2016-02-29
dc.date.accessioned.fl_str_mv 2017-04-26T16:56:47Z
dc.date.available.fl_str_mv 2017-04-26T16:56:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/18646
dc.identifier.dark.fl_str_mv ark:/64986/0013000013ffr
url https://repositorio.ufpe.br/handle/123456789/18646
identifier_str_mv ark:/64986/0013000013ffr
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Fisica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/18646/5/Tese_Anderson_Amaral.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/18646/1/Tese_Anderson_Amaral.pdf
https://repositorio.ufpe.br/bitstream/123456789/18646/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/18646/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/18646/4/Tese_Anderson_Amaral.pdf.txt
bitstream.checksum.fl_str_mv 8002fc403b7969018ce41b737bb5262a
d9633b708d004572ce2495387f757089
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
563ff4ca69b72caf6f0bf0f2a993708b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172990931828736