Transverse optical phenomena with Gaussian beams and optical vortices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000013ffr |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/18646 |
Resumo: | In this thesis are presented various results regarding the transverse structure of light beams in the paraxial propagation regime, with a special concern with singularities in the transverse profile and in nonlinear optics applications. Theoretical and experimental tools were developed for the study of Optical Vortices (OV) and its most important characteristics, as the Orbital Angular Momentum (OAM) and the Topological Charge (TC). In a first step, we theoretically described and experimentally demonstrated that it is possible to shape the intensity profile of a beam containing OV by distributing TC over the plane transverse to the propagation direction [1]. The TC is associated with a phase singularity that implies in points of zero intensity. By distributing the TC on the transverse plane, it is possible to shape the beam dark region and also the OAM profile with the goal of optimizing the light beam for a given application. However, a problem identified in [1] was that most of the current available techniques to characterize OAM light implicitly assume that the beam has cylindrical symmetry, thus being inadequate to characterize fields resulting from more general TC distributions. These problems were approached in a second work [2], where it was shown that by measuring the field transverse amplitude and phase profiles it is possible to measure the OAM and the TC in TC distributions with arbitrary geometries. By combination of the results [1] and [2] it is possible to optimize and characterize the TC distributions for given applications, as for example by designing the transverse forces in an optical tweezer for microparticle manipulation. An important theoretical unfold during these works was the identification of an analogous relation between the field transverse phase in a TC distribution with the Coulomb potential in two-dimensional electrostatics. We then introduced in [3] the Topological Potential (TP) concept which allows the design of structured optical beams with complex spatial profiles inspired by two-dimensional electrostatics analogies. The TP can be used to describe a broad class of TC distributions, as those from [1,2] or the more sophisticate examples in [3]. In another set of results, it is discussed the possibility of using concepts and the formalism of quantum mechanics to solve light propagation problems in the classical approximation. Among the results obtained, it should be remarked that the formalism obtained has a simple and direct relation with ABCD matrices and ray optics [4]. These results were used to understand light propagation in systems containing nonlinear materials, as in SLIM [5] and D4σ [6] techniques. In [5, 6] the theoretical results were compared with experimental data obtained from standard samples, as carbon dissulfide (CS2), acetone and fused silica. It was obtained a very good agreement between the measured optical nonlinearities and the results established in literature for these materials. |
id |
UFPE_43c1dc00d2cdc1de50799f9e0caf4f9b |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/18646 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
AMARAL, Anderson Monteirohttp://lattes.cnpq.br/1832322110328811http://lattes.cnpq.br/7109489698613515ARAÚJO, Bartolomeu de2017-04-26T16:56:47Z2017-04-26T16:56:47Z2016-02-29https://repositorio.ufpe.br/handle/123456789/18646ark:/64986/0013000013ffrIn this thesis are presented various results regarding the transverse structure of light beams in the paraxial propagation regime, with a special concern with singularities in the transverse profile and in nonlinear optics applications. Theoretical and experimental tools were developed for the study of Optical Vortices (OV) and its most important characteristics, as the Orbital Angular Momentum (OAM) and the Topological Charge (TC). In a first step, we theoretically described and experimentally demonstrated that it is possible to shape the intensity profile of a beam containing OV by distributing TC over the plane transverse to the propagation direction [1]. The TC is associated with a phase singularity that implies in points of zero intensity. By distributing the TC on the transverse plane, it is possible to shape the beam dark region and also the OAM profile with the goal of optimizing the light beam for a given application. However, a problem identified in [1] was that most of the current available techniques to characterize OAM light implicitly assume that the beam has cylindrical symmetry, thus being inadequate to characterize fields resulting from more general TC distributions. These problems were approached in a second work [2], where it was shown that by measuring the field transverse amplitude and phase profiles it is possible to measure the OAM and the TC in TC distributions with arbitrary geometries. By combination of the results [1] and [2] it is possible to optimize and characterize the TC distributions for given applications, as for example by designing the transverse forces in an optical tweezer for microparticle manipulation. An important theoretical unfold during these works was the identification of an analogous relation between the field transverse phase in a TC distribution with the Coulomb potential in two-dimensional electrostatics. We then introduced in [3] the Topological Potential (TP) concept which allows the design of structured optical beams with complex spatial profiles inspired by two-dimensional electrostatics analogies. The TP can be used to describe a broad class of TC distributions, as those from [1,2] or the more sophisticate examples in [3]. In another set of results, it is discussed the possibility of using concepts and the formalism of quantum mechanics to solve light propagation problems in the classical approximation. Among the results obtained, it should be remarked that the formalism obtained has a simple and direct relation with ABCD matrices and ray optics [4]. These results were used to understand light propagation in systems containing nonlinear materials, as in SLIM [5] and D4σ [6] techniques. In [5, 6] the theoretical results were compared with experimental data obtained from standard samples, as carbon dissulfide (CS2), acetone and fused silica. It was obtained a very good agreement between the measured optical nonlinearities and the results established in literature for these materials.CNPQNesta tese são apresentados resultados relacionados com a estrutura transversal de feixes de luz no regime paraxial de propagação, com uma atenção especial em singularidades no perfil transversal e em aplicações para óptica não linear. Foram desenvolvidas ferramentas teóricas e experimentais para o estudo de vórtices ópticos (Optical Vortices - OVs), e suas características mais importantes, como o momento angular orbital (Orbital Angular Momentum - OAM) e a carga topológica (Topological Charge - TC). Inicialmente, foi teoricamente descrito e experimentalmente demonstrado como é possível moldar o perfil de intensidade de um feixe contendo OVs usando uma distribuição de TC sobre o plano transversal à direção de propagação [1]. A TC está associada a uma singularidade na fase, o que implica em um zero de intensidade. Ao se distribuir a TC sobre o plano transversal, é possível moldar o formato da região de intensidade nula e também o perfil de OAM no intuito de otimizar o feixe para uma dada aplicação. No entanto, um problema identificado neste trabalho é que a maior parte das técnicas de caracterização disponíveis para luz com OAM implicitamente supunham que o feixe possui simetria cilíndrica, e portanto não eram adequadas para caracterizar campos obtidos a partir de distribuições de TC com geometrias mais gerais. Tais problemas foram abordados em um segundo trabalho [2], onde foi mostrado que por meio de medições dos perfis transversais de amplitude e fase do campo elétrico é possível medir o OAM e a TC em distribuições de TC com formas geométricas arbitrárias. A união dos trabalhos [1] e [2] permite então que as distribuições de TC possam ser adequadamente otimizadas e caracterizadas para aplicações específicas, como por exemplo ao moldar as forças transversais numa pinça óptica para a manipulação de micropartículas. Um desdobramento teórico importante obtido foi identificar uma relação análoga entre o perfil de fase em uma distribuição de TC com o potencial de Coulomb em eletrostática bidimensional. Foi então introduzido em [3] o conceito de potencial topológico (Topological Potential - TP) que possibilita a construção de feixes ópticos estruturados com perfis espaciais complexos inspirados em analogias com eletrostática bidimensional. O TP pode ser usado na descrição de uma grande variedade de distribuições de TC, como nos feixes em [1, 2] ou nos exemplos mais sofisticados em [3]. Posteriormente, é discutida a possibilidade de se utilizar conceitos e o formalismo da mecânica quântica na solução de problemas de propagação da luz descrita na aproximação clássica. Dentre os resultados obtidos, destaca-se que o formalismo possui uma relação simples e direta com as matrizes ABCD e a óptica de raios [4]. Estes resultados foram utilizados na compreensão da propagação da luz em sistemas contendo materiais não lineares, como nas técnicas SLIM [5] e D4σ[6]. Nos trabalhos [5,6] os resultados teóricos foram comparados com dados experimentais obtidos em amostras padrão, como dissulfeto de carbono (CS2), acetona e sílica fundida. Foi obtida uma concordância muito boa entre os valores medidos para as não linearidades ópticas nestes materiais e os valores estabelecidos na literatura.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessÓptica singular. Momento angular orbital da luz. Frente de onda da luz. Holografia. Óptica não linear. Óptica física.Singular optics. Light orbital angular momentum. Optical wavefront. Holography. Nonlinear optics. Physical optics.Transverse optical phenomena with Gaussian beams and optical vorticesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTese_Anderson_Amaral.pdf.jpgTese_Anderson_Amaral.pdf.jpgGenerated Thumbnailimage/jpeg1232https://repositorio.ufpe.br/bitstream/123456789/18646/5/Tese_Anderson_Amaral.pdf.jpg8002fc403b7969018ce41b737bb5262aMD55ORIGINALTese_Anderson_Amaral.pdfTese_Anderson_Amaral.pdfapplication/pdf6016426https://repositorio.ufpe.br/bitstream/123456789/18646/1/Tese_Anderson_Amaral.pdfd9633b708d004572ce2495387f757089MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/18646/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/18646/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTese_Anderson_Amaral.pdf.txtTese_Anderson_Amaral.pdf.txtExtracted texttext/plain377876https://repositorio.ufpe.br/bitstream/123456789/18646/4/Tese_Anderson_Amaral.pdf.txt563ff4ca69b72caf6f0bf0f2a993708bMD54123456789/186462019-10-25 04:47:44.153oai:repositorio.ufpe.br:123456789/18646TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:47:44Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Transverse optical phenomena with Gaussian beams and optical vortices |
title |
Transverse optical phenomena with Gaussian beams and optical vortices |
spellingShingle |
Transverse optical phenomena with Gaussian beams and optical vortices AMARAL, Anderson Monteiro Óptica singular. Momento angular orbital da luz. Frente de onda da luz. Holografia. Óptica não linear. Óptica física. Singular optics. Light orbital angular momentum. Optical wavefront. Holography. Nonlinear optics. Physical optics. |
title_short |
Transverse optical phenomena with Gaussian beams and optical vortices |
title_full |
Transverse optical phenomena with Gaussian beams and optical vortices |
title_fullStr |
Transverse optical phenomena with Gaussian beams and optical vortices |
title_full_unstemmed |
Transverse optical phenomena with Gaussian beams and optical vortices |
title_sort |
Transverse optical phenomena with Gaussian beams and optical vortices |
author |
AMARAL, Anderson Monteiro |
author_facet |
AMARAL, Anderson Monteiro |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/1832322110328811 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7109489698613515 |
dc.contributor.author.fl_str_mv |
AMARAL, Anderson Monteiro |
dc.contributor.advisor1.fl_str_mv |
ARAÚJO, Bartolomeu de |
contributor_str_mv |
ARAÚJO, Bartolomeu de |
dc.subject.por.fl_str_mv |
Óptica singular. Momento angular orbital da luz. Frente de onda da luz. Holografia. Óptica não linear. Óptica física. Singular optics. Light orbital angular momentum. Optical wavefront. Holography. Nonlinear optics. Physical optics. |
topic |
Óptica singular. Momento angular orbital da luz. Frente de onda da luz. Holografia. Óptica não linear. Óptica física. Singular optics. Light orbital angular momentum. Optical wavefront. Holography. Nonlinear optics. Physical optics. |
description |
In this thesis are presented various results regarding the transverse structure of light beams in the paraxial propagation regime, with a special concern with singularities in the transverse profile and in nonlinear optics applications. Theoretical and experimental tools were developed for the study of Optical Vortices (OV) and its most important characteristics, as the Orbital Angular Momentum (OAM) and the Topological Charge (TC). In a first step, we theoretically described and experimentally demonstrated that it is possible to shape the intensity profile of a beam containing OV by distributing TC over the plane transverse to the propagation direction [1]. The TC is associated with a phase singularity that implies in points of zero intensity. By distributing the TC on the transverse plane, it is possible to shape the beam dark region and also the OAM profile with the goal of optimizing the light beam for a given application. However, a problem identified in [1] was that most of the current available techniques to characterize OAM light implicitly assume that the beam has cylindrical symmetry, thus being inadequate to characterize fields resulting from more general TC distributions. These problems were approached in a second work [2], where it was shown that by measuring the field transverse amplitude and phase profiles it is possible to measure the OAM and the TC in TC distributions with arbitrary geometries. By combination of the results [1] and [2] it is possible to optimize and characterize the TC distributions for given applications, as for example by designing the transverse forces in an optical tweezer for microparticle manipulation. An important theoretical unfold during these works was the identification of an analogous relation between the field transverse phase in a TC distribution with the Coulomb potential in two-dimensional electrostatics. We then introduced in [3] the Topological Potential (TP) concept which allows the design of structured optical beams with complex spatial profiles inspired by two-dimensional electrostatics analogies. The TP can be used to describe a broad class of TC distributions, as those from [1,2] or the more sophisticate examples in [3]. In another set of results, it is discussed the possibility of using concepts and the formalism of quantum mechanics to solve light propagation problems in the classical approximation. Among the results obtained, it should be remarked that the formalism obtained has a simple and direct relation with ABCD matrices and ray optics [4]. These results were used to understand light propagation in systems containing nonlinear materials, as in SLIM [5] and D4σ [6] techniques. In [5, 6] the theoretical results were compared with experimental data obtained from standard samples, as carbon dissulfide (CS2), acetone and fused silica. It was obtained a very good agreement between the measured optical nonlinearities and the results established in literature for these materials. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-02-29 |
dc.date.accessioned.fl_str_mv |
2017-04-26T16:56:47Z |
dc.date.available.fl_str_mv |
2017-04-26T16:56:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/18646 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000013ffr |
url |
https://repositorio.ufpe.br/handle/123456789/18646 |
identifier_str_mv |
ark:/64986/0013000013ffr |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Fisica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/18646/5/Tese_Anderson_Amaral.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/18646/1/Tese_Anderson_Amaral.pdf https://repositorio.ufpe.br/bitstream/123456789/18646/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/18646/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/18646/4/Tese_Anderson_Amaral.pdf.txt |
bitstream.checksum.fl_str_mv |
8002fc403b7969018ce41b737bb5262a d9633b708d004572ce2495387f757089 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 563ff4ca69b72caf6f0bf0f2a993708b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172990931828736 |