Otimização robusta de estruturas utilizando o método da base reduzida

Detalhes bibliográficos
Autor(a) principal: de Siqueira Motta, Renato
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000wbxv
Texto Completo: https://repositorio.ufpe.br/handle/123456789/5327
Resumo: Com o rápido aumento da capacidade computacional, o tema otimização avançou de maneira notável nos últimos anos. Atualmente inúmeras aplicações de projetos ótimos em diferentes especialidades, como mecânica estrutural, custos de produção, escoamento de fluidos, acústica, etc. têm sido descritas na literatura. Entretanto, na maioria das aplicações da engenharia, a abordagem tradicional é considerar modelos e parâmetros determinísticos. Infelizmente a abordagem determinística pode levar a soluções cujo desempenho pode cair significativamente devido às perturbações decorrentes das incertezas. Nestas circunstâncias, um objetivo melhor seria um projeto ótimo que tenha um alto grau de robustez. O processo de encontrar este ótimo é chamado Otimização Robusta (OR). Aqui, abordaremos duas técnicas para a análise de propagação de incerteza, não intrusivas, que utiliza modelos computacionais determinísticos: o método de Monte Carlo (MC) e o método da Colocação Probabilística ( Probabilistic Collocation Method ) (PCM). A análise de propagação de incerteza essencialmente envolve o cálculo de momentos estatísticos da função de interesse. Várias medidas de robustez têm sido propostas na literatura, em particular, o valor médio e o desvio padrão da função envolvida no problema de otimização serão considerados aqui. Quando estas medidas de robustez são usadas combinadas, a procura de projetos ótimos robustos surge como um problema de Otimização Multiobjetivo Robusta (OMR). Técnicas de Otimização Multiobjetiva permitem o projetista modelar um problema específico considerando um comportamento mais realista, o qual comumente envolve o atendimento de vários objetivos simultaneamente. O procedimento adequado, quando um problema multiobjetivo precisa ser resolvido, é determinar a fronteira de Pareto. Nos últimos 15 anos, distribuições eficientes de pontos de Pareto têm sido obtidas através de novos algoritmos como o NBI (Normal-Boundary Intersection) e o NNC (Normalized Normal-Constraint). Estas estratégias são implementadas aqui, junto com outras abordagens comumente utilizadas na literatura, como o método da soma ponderada e o método Min-Max. Como a geração de pontos de Pareto e a análise de incerteza podem ser muito custosas, técnicas de aproximação, baseada no uso do Método da Base Reduzida (MBR), são incorporadas ao nosso procedimento. O propósito do método é obter um modelo de alta fidelidade com custo computacional aceitável. Além disto, uma estratégia de separabilidade com uma decomposição afim, permite o desenvolvimento de uma estratégia eficiente de cálculo off-line/on-line , para a implementação computacional do MBR. Problemas contínuos em duas dimensões submetidos a carregamentos estáticos e térmicos são as aplicações consideradas neste trabalho, os desempenhos das diferentes estratégias examinadas são comparadas. A combinação das várias técnicas de aproximação descritas permitiu a obtenção das soluções OMR em pouco tempo computacional
id UFPE_44b0c616866e127d0bc2585b97071098
oai_identifier_str oai:repositorio.ufpe.br:123456789/5327
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling de Siqueira Motta, RenatoMaria Bastos Afonso da Silva, Silvana 2014-06-12T17:38:07Z2014-06-12T17:38:07Z2009-01-31de Siqueira Motta, Renato; Maria Bastos Afonso da Silva, Silvana. Otimização robusta de estruturas utilizando o método da base reduzida. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Pernambuco, Recife, 2009.https://repositorio.ufpe.br/handle/123456789/5327ark:/64986/001300000wbxvCom o rápido aumento da capacidade computacional, o tema otimização avançou de maneira notável nos últimos anos. Atualmente inúmeras aplicações de projetos ótimos em diferentes especialidades, como mecânica estrutural, custos de produção, escoamento de fluidos, acústica, etc. têm sido descritas na literatura. Entretanto, na maioria das aplicações da engenharia, a abordagem tradicional é considerar modelos e parâmetros determinísticos. Infelizmente a abordagem determinística pode levar a soluções cujo desempenho pode cair significativamente devido às perturbações decorrentes das incertezas. Nestas circunstâncias, um objetivo melhor seria um projeto ótimo que tenha um alto grau de robustez. O processo de encontrar este ótimo é chamado Otimização Robusta (OR). Aqui, abordaremos duas técnicas para a análise de propagação de incerteza, não intrusivas, que utiliza modelos computacionais determinísticos: o método de Monte Carlo (MC) e o método da Colocação Probabilística ( Probabilistic Collocation Method ) (PCM). A análise de propagação de incerteza essencialmente envolve o cálculo de momentos estatísticos da função de interesse. Várias medidas de robustez têm sido propostas na literatura, em particular, o valor médio e o desvio padrão da função envolvida no problema de otimização serão considerados aqui. Quando estas medidas de robustez são usadas combinadas, a procura de projetos ótimos robustos surge como um problema de Otimização Multiobjetivo Robusta (OMR). Técnicas de Otimização Multiobjetiva permitem o projetista modelar um problema específico considerando um comportamento mais realista, o qual comumente envolve o atendimento de vários objetivos simultaneamente. O procedimento adequado, quando um problema multiobjetivo precisa ser resolvido, é determinar a fronteira de Pareto. Nos últimos 15 anos, distribuições eficientes de pontos de Pareto têm sido obtidas através de novos algoritmos como o NBI (Normal-Boundary Intersection) e o NNC (Normalized Normal-Constraint). Estas estratégias são implementadas aqui, junto com outras abordagens comumente utilizadas na literatura, como o método da soma ponderada e o método Min-Max. Como a geração de pontos de Pareto e a análise de incerteza podem ser muito custosas, técnicas de aproximação, baseada no uso do Método da Base Reduzida (MBR), são incorporadas ao nosso procedimento. O propósito do método é obter um modelo de alta fidelidade com custo computacional aceitável. Além disto, uma estratégia de separabilidade com uma decomposição afim, permite o desenvolvimento de uma estratégia eficiente de cálculo off-line/on-line , para a implementação computacional do MBR. Problemas contínuos em duas dimensões submetidos a carregamentos estáticos e térmicos são as aplicações consideradas neste trabalho, os desempenhos das diferentes estratégias examinadas são comparadas. A combinação das várias técnicas de aproximação descritas permitiu a obtenção das soluções OMR em pouco tempo computacionalConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessOtimização robustaMétodo da Colocação ProbabilísticaOtimização Multiobjetivo, Método da base reduzida.Otimização robusta de estruturas utilizando o método da base reduzidainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo2435_1.pdf.jpgarquivo2435_1.pdf.jpgGenerated Thumbnailimage/jpeg1406https://repositorio.ufpe.br/bitstream/123456789/5327/4/arquivo2435_1.pdf.jpg4cacf07fbb81ce7d4e600cf544654074MD54ORIGINALarquivo2435_1.pdfapplication/pdf3502745https://repositorio.ufpe.br/bitstream/123456789/5327/1/arquivo2435_1.pdf4d9345dea9759878dee2a393aa22325aMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/5327/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo2435_1.pdf.txtarquivo2435_1.pdf.txtExtracted texttext/plain242833https://repositorio.ufpe.br/bitstream/123456789/5327/3/arquivo2435_1.pdf.txt23f1955e21521e94350719aef47798b5MD53123456789/53272019-10-25 14:09:44.805oai:repositorio.ufpe.br:123456789/5327Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T17:09:44Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Otimização robusta de estruturas utilizando o método da base reduzida
title Otimização robusta de estruturas utilizando o método da base reduzida
spellingShingle Otimização robusta de estruturas utilizando o método da base reduzida
de Siqueira Motta, Renato
Otimização robusta
Método da Colocação Probabilística
Otimização Multiobjetivo, Método da base reduzida.
title_short Otimização robusta de estruturas utilizando o método da base reduzida
title_full Otimização robusta de estruturas utilizando o método da base reduzida
title_fullStr Otimização robusta de estruturas utilizando o método da base reduzida
title_full_unstemmed Otimização robusta de estruturas utilizando o método da base reduzida
title_sort Otimização robusta de estruturas utilizando o método da base reduzida
author de Siqueira Motta, Renato
author_facet de Siqueira Motta, Renato
author_role author
dc.contributor.author.fl_str_mv de Siqueira Motta, Renato
dc.contributor.advisor1.fl_str_mv Maria Bastos Afonso da Silva, Silvana
contributor_str_mv Maria Bastos Afonso da Silva, Silvana
dc.subject.por.fl_str_mv Otimização robusta
Método da Colocação Probabilística
Otimização Multiobjetivo, Método da base reduzida.
topic Otimização robusta
Método da Colocação Probabilística
Otimização Multiobjetivo, Método da base reduzida.
description Com o rápido aumento da capacidade computacional, o tema otimização avançou de maneira notável nos últimos anos. Atualmente inúmeras aplicações de projetos ótimos em diferentes especialidades, como mecânica estrutural, custos de produção, escoamento de fluidos, acústica, etc. têm sido descritas na literatura. Entretanto, na maioria das aplicações da engenharia, a abordagem tradicional é considerar modelos e parâmetros determinísticos. Infelizmente a abordagem determinística pode levar a soluções cujo desempenho pode cair significativamente devido às perturbações decorrentes das incertezas. Nestas circunstâncias, um objetivo melhor seria um projeto ótimo que tenha um alto grau de robustez. O processo de encontrar este ótimo é chamado Otimização Robusta (OR). Aqui, abordaremos duas técnicas para a análise de propagação de incerteza, não intrusivas, que utiliza modelos computacionais determinísticos: o método de Monte Carlo (MC) e o método da Colocação Probabilística ( Probabilistic Collocation Method ) (PCM). A análise de propagação de incerteza essencialmente envolve o cálculo de momentos estatísticos da função de interesse. Várias medidas de robustez têm sido propostas na literatura, em particular, o valor médio e o desvio padrão da função envolvida no problema de otimização serão considerados aqui. Quando estas medidas de robustez são usadas combinadas, a procura de projetos ótimos robustos surge como um problema de Otimização Multiobjetivo Robusta (OMR). Técnicas de Otimização Multiobjetiva permitem o projetista modelar um problema específico considerando um comportamento mais realista, o qual comumente envolve o atendimento de vários objetivos simultaneamente. O procedimento adequado, quando um problema multiobjetivo precisa ser resolvido, é determinar a fronteira de Pareto. Nos últimos 15 anos, distribuições eficientes de pontos de Pareto têm sido obtidas através de novos algoritmos como o NBI (Normal-Boundary Intersection) e o NNC (Normalized Normal-Constraint). Estas estratégias são implementadas aqui, junto com outras abordagens comumente utilizadas na literatura, como o método da soma ponderada e o método Min-Max. Como a geração de pontos de Pareto e a análise de incerteza podem ser muito custosas, técnicas de aproximação, baseada no uso do Método da Base Reduzida (MBR), são incorporadas ao nosso procedimento. O propósito do método é obter um modelo de alta fidelidade com custo computacional aceitável. Além disto, uma estratégia de separabilidade com uma decomposição afim, permite o desenvolvimento de uma estratégia eficiente de cálculo off-line/on-line , para a implementação computacional do MBR. Problemas contínuos em duas dimensões submetidos a carregamentos estáticos e térmicos são as aplicações consideradas neste trabalho, os desempenhos das diferentes estratégias examinadas são comparadas. A combinação das várias técnicas de aproximação descritas permitiu a obtenção das soluções OMR em pouco tempo computacional
publishDate 2009
dc.date.issued.fl_str_mv 2009-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T17:38:07Z
dc.date.available.fl_str_mv 2014-06-12T17:38:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv de Siqueira Motta, Renato; Maria Bastos Afonso da Silva, Silvana. Otimização robusta de estruturas utilizando o método da base reduzida. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Pernambuco, Recife, 2009.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/5327
dc.identifier.dark.fl_str_mv ark:/64986/001300000wbxv
identifier_str_mv de Siqueira Motta, Renato; Maria Bastos Afonso da Silva, Silvana. Otimização robusta de estruturas utilizando o método da base reduzida. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Pernambuco, Recife, 2009.
ark:/64986/001300000wbxv
url https://repositorio.ufpe.br/handle/123456789/5327
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/5327/4/arquivo2435_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/5327/1/arquivo2435_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/5327/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/5327/3/arquivo2435_1.pdf.txt
bitstream.checksum.fl_str_mv 4cacf07fbb81ce7d4e600cf544654074
4d9345dea9759878dee2a393aa22325a
8a4605be74aa9ea9d79846c1fba20a33
23f1955e21521e94350719aef47798b5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172933239177216