Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000xp5m |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/4133 |
Resumo: | O ano de 2008 foi marcado pelo ápice da crise financeira mundial, iniciada no mercado imobiliário dos Estados Unidos. Também nesse período, constatou-se o aumento da produção de estudos teóricos e empíricos sobre os determinantes de crises no sistema financeiro e, especificamente, no sistema bancário. Embora diversos trabalhos desenvolvidos analisem os determinantes de falência bancária, buscando identificar quais variáveis econômicas causam desequilíbrios no sistema financeiro, as conclusões encontradas nem sempre convergem para modelos eficientes no processo de early warning. O presente trabalho tem por objetivo avaliar como os modelos de redes neurais artificiais podem ser utilizados enquanto ferramentas para previsão de insolvência bancária no Brasil. Para tanto, foram utilizados dados a respeito de liquidação bancária entre os anos de 1996 e 1999 associados a três processos distintos de amostragem dos bancos solventes. Os resultados mostram que o maior volume de variáveis explicativas (neurônios de entrada) no modelo de redes neurais torna o modelo melhor ajustado à série e com menor erro quadrado médio de previsão, ainda que seja possível verificar uma forte presença de multicolinearidade entre essas variáveis. Finalmente, verificou-se que os modelos de redes neurais artificiais apresentam bom desempenho na previsão de falência bancária no Brasil independentemente do processo de amostragem selecionado |
id |
UFPE_44b669c1bbb390a8cf40a5af7ef5b08d |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/4133 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Vieira, Amanda AiresLima, Ricardo Chaves2014-06-12T17:20:03Z2014-06-12T17:20:03Z2010-01-31Aires Vieira, Amanda; Chaves Lima, Ricardo. Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Economia, Universidade Federal de Pernambuco, Recife, 2010.https://repositorio.ufpe.br/handle/123456789/4133ark:/64986/001300000xp5mO ano de 2008 foi marcado pelo ápice da crise financeira mundial, iniciada no mercado imobiliário dos Estados Unidos. Também nesse período, constatou-se o aumento da produção de estudos teóricos e empíricos sobre os determinantes de crises no sistema financeiro e, especificamente, no sistema bancário. Embora diversos trabalhos desenvolvidos analisem os determinantes de falência bancária, buscando identificar quais variáveis econômicas causam desequilíbrios no sistema financeiro, as conclusões encontradas nem sempre convergem para modelos eficientes no processo de early warning. O presente trabalho tem por objetivo avaliar como os modelos de redes neurais artificiais podem ser utilizados enquanto ferramentas para previsão de insolvência bancária no Brasil. Para tanto, foram utilizados dados a respeito de liquidação bancária entre os anos de 1996 e 1999 associados a três processos distintos de amostragem dos bancos solventes. Os resultados mostram que o maior volume de variáveis explicativas (neurônios de entrada) no modelo de redes neurais torna o modelo melhor ajustado à série e com menor erro quadrado médio de previsão, ainda que seja possível verificar uma forte presença de multicolinearidade entre essas variáveis. Finalmente, verificou-se que os modelos de redes neurais artificiais apresentam bom desempenho na previsão de falência bancária no Brasil independentemente do processo de amostragem selecionadoConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRedes Neurais ArtificiaisFalência BancáriaAvaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiroinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo572_1.pdf.jpgarquivo572_1.pdf.jpgGenerated Thumbnailimage/jpeg1215https://repositorio.ufpe.br/bitstream/123456789/4133/4/arquivo572_1.pdf.jpgb5bad8a6de472a642607326c35a94709MD54ORIGINALarquivo572_1.pdfapplication/pdf1212560https://repositorio.ufpe.br/bitstream/123456789/4133/1/arquivo572_1.pdf17195f6a9a419934856bdf5e4472d49eMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/4133/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo572_1.pdf.txtarquivo572_1.pdf.txtExtracted texttext/plain153352https://repositorio.ufpe.br/bitstream/123456789/4133/3/arquivo572_1.pdf.txtff9d706ed8ced51704b8012872c3faabMD53123456789/41332019-10-25 13:38:02.508oai:repositorio.ufpe.br:123456789/4133Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T16:38:02Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro |
title |
Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro |
spellingShingle |
Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro Vieira, Amanda Aires Redes Neurais Artificiais Falência Bancária |
title_short |
Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro |
title_full |
Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro |
title_fullStr |
Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro |
title_full_unstemmed |
Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro |
title_sort |
Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro |
author |
Vieira, Amanda Aires |
author_facet |
Vieira, Amanda Aires |
author_role |
author |
dc.contributor.author.fl_str_mv |
Vieira, Amanda Aires |
dc.contributor.advisor1.fl_str_mv |
Lima, Ricardo Chaves |
contributor_str_mv |
Lima, Ricardo Chaves |
dc.subject.por.fl_str_mv |
Redes Neurais Artificiais Falência Bancária |
topic |
Redes Neurais Artificiais Falência Bancária |
description |
O ano de 2008 foi marcado pelo ápice da crise financeira mundial, iniciada no mercado imobiliário dos Estados Unidos. Também nesse período, constatou-se o aumento da produção de estudos teóricos e empíricos sobre os determinantes de crises no sistema financeiro e, especificamente, no sistema bancário. Embora diversos trabalhos desenvolvidos analisem os determinantes de falência bancária, buscando identificar quais variáveis econômicas causam desequilíbrios no sistema financeiro, as conclusões encontradas nem sempre convergem para modelos eficientes no processo de early warning. O presente trabalho tem por objetivo avaliar como os modelos de redes neurais artificiais podem ser utilizados enquanto ferramentas para previsão de insolvência bancária no Brasil. Para tanto, foram utilizados dados a respeito de liquidação bancária entre os anos de 1996 e 1999 associados a três processos distintos de amostragem dos bancos solventes. Os resultados mostram que o maior volume de variáveis explicativas (neurônios de entrada) no modelo de redes neurais torna o modelo melhor ajustado à série e com menor erro quadrado médio de previsão, ainda que seja possível verificar uma forte presença de multicolinearidade entre essas variáveis. Finalmente, verificou-se que os modelos de redes neurais artificiais apresentam bom desempenho na previsão de falência bancária no Brasil independentemente do processo de amostragem selecionado |
publishDate |
2010 |
dc.date.issued.fl_str_mv |
2010-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T17:20:03Z |
dc.date.available.fl_str_mv |
2014-06-12T17:20:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Aires Vieira, Amanda; Chaves Lima, Ricardo. Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Economia, Universidade Federal de Pernambuco, Recife, 2010. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/4133 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000xp5m |
identifier_str_mv |
Aires Vieira, Amanda; Chaves Lima, Ricardo. Avaliação de insolvência no sistema bancário: uma aplicação para o caso brasileiro. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Economia, Universidade Federal de Pernambuco, Recife, 2010. ark:/64986/001300000xp5m |
url |
https://repositorio.ufpe.br/handle/123456789/4133 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/4133/4/arquivo572_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/4133/1/arquivo572_1.pdf https://repositorio.ufpe.br/bitstream/123456789/4133/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/4133/3/arquivo572_1.pdf.txt |
bitstream.checksum.fl_str_mv |
b5bad8a6de472a642607326c35a94709 17195f6a9a419934856bdf5e4472d49e 8a4605be74aa9ea9d79846c1fba20a33 ff9d706ed8ced51704b8012872c3faab |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172945662705664 |