ConPredict: Predição de Links em Redes de Coautoria Baseada em Conteúdo

Detalhes bibliográficos
Autor(a) principal: ANTUNES, Jamilson Batista
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000qd8g
Texto Completo: https://repositorio.ufpe.br/handle/123456789/12372
Resumo: A predição de relacionamentos (Link Prediction) é uma subárea da Mineração de Links e uma das tarefas associadas à Análise de Redes Sociais. Seu objetivo é predizer o surgimento de relacionamentos futuros entre os nós em uma rede social. Este trabalho tem como foco a análise de redes de coautoria, que são um tipo particular de rede de relacionamentos. Já foram propostos muitos métodos para lidar com problemas de predição de links em redes de coautoria. A maioria deles consiste na análise da estrutura da rede através do uso de alguma métrica. Assim, esses trabalhos limitam-se a analisar a rede levando em consideração apenas sua topologia, sem considerar a similaridade do conteúdo dos nós. Este trabalho propõe a utilização de uma abordagem híbrida (baseada na topologia da rede e a baseada em conteúdo) para predição de links em redes de coautoria. O método proposto inicialmente analisa a estrutura da rede atual, e propõe uma lista de links futuros (pares de autores candidatos a colaborarem no futuro) com base na distância entre os nós da rede atual (análise baseada em padrões estruturais da rede). Apenas nós com distância máxima de dois farão parte dessa lista. A seguir, o método proposto calcula a similaridade de conteúdo de cada par de nós (links) nessa lista inicial (análise baseada em similaridade de conteúdo). Apenas os pares de nós que alcançarem o limiar de similaridade adotado (parametrizável) serão propostos como links futuros. Aqui, a análise de similaridade de conteúdo leva em conta os títulos e resumos dos trabalhos publicados por cada autor. Basicamente, o método trabalha com três redes de coautorias: a rede inicial, usada para predição de novos links (chamada nesse trabalho de rede de Coautoria A), uma rede de validação (rede de Coautoria B) e a rede predita (rede de Coautoria C). Nos experimentos realizados, as redes A e B foram extraídas a partir de um repositório de publicações. A rede de Coautoria A (rede inicial) foi gerada a partir de um intervalo de três anos de publicações cientificas, e a rede de Coautoria B (rede futura real) considerava os três anos consecutivos. A rede de Coautoria C predita segundo o método proposto foi comparada com a rede B, a fim de medirmos a performance do nosso método. Os experimentos realizados com quatro sub-redes reais demonstraram que, em geral, o método obteve desempenho satisfatório, tendo obtido melhor resultado sem o uso de Stemming (método para redução de uma palavra ao seu radical, removendo as desinências, afixos, e vogais temáticas) na fase de processamento do conteúdo textual de cada nó da rede.
id UFPE_4abb55971210b6676b227cb05e200dad
oai_identifier_str oai:repositorio.ufpe.br:123456789/12372
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ANTUNES, Jamilson BatistaBARROS, Flavia de Almeida2015-03-13T12:59:16Z2015-03-13T12:59:16Z2013-06-18https://repositorio.ufpe.br/handle/123456789/12372ark:/64986/001300000qd8gA predição de relacionamentos (Link Prediction) é uma subárea da Mineração de Links e uma das tarefas associadas à Análise de Redes Sociais. Seu objetivo é predizer o surgimento de relacionamentos futuros entre os nós em uma rede social. Este trabalho tem como foco a análise de redes de coautoria, que são um tipo particular de rede de relacionamentos. Já foram propostos muitos métodos para lidar com problemas de predição de links em redes de coautoria. A maioria deles consiste na análise da estrutura da rede através do uso de alguma métrica. Assim, esses trabalhos limitam-se a analisar a rede levando em consideração apenas sua topologia, sem considerar a similaridade do conteúdo dos nós. Este trabalho propõe a utilização de uma abordagem híbrida (baseada na topologia da rede e a baseada em conteúdo) para predição de links em redes de coautoria. O método proposto inicialmente analisa a estrutura da rede atual, e propõe uma lista de links futuros (pares de autores candidatos a colaborarem no futuro) com base na distância entre os nós da rede atual (análise baseada em padrões estruturais da rede). Apenas nós com distância máxima de dois farão parte dessa lista. A seguir, o método proposto calcula a similaridade de conteúdo de cada par de nós (links) nessa lista inicial (análise baseada em similaridade de conteúdo). Apenas os pares de nós que alcançarem o limiar de similaridade adotado (parametrizável) serão propostos como links futuros. Aqui, a análise de similaridade de conteúdo leva em conta os títulos e resumos dos trabalhos publicados por cada autor. Basicamente, o método trabalha com três redes de coautorias: a rede inicial, usada para predição de novos links (chamada nesse trabalho de rede de Coautoria A), uma rede de validação (rede de Coautoria B) e a rede predita (rede de Coautoria C). Nos experimentos realizados, as redes A e B foram extraídas a partir de um repositório de publicações. A rede de Coautoria A (rede inicial) foi gerada a partir de um intervalo de três anos de publicações cientificas, e a rede de Coautoria B (rede futura real) considerava os três anos consecutivos. A rede de Coautoria C predita segundo o método proposto foi comparada com a rede B, a fim de medirmos a performance do nosso método. Os experimentos realizados com quatro sub-redes reais demonstraram que, em geral, o método obteve desempenho satisfatório, tendo obtido melhor resultado sem o uso de Stemming (método para redução de uma palavra ao seu radical, removendo as desinências, afixos, e vogais temáticas) na fase de processamento do conteúdo textual de cada nó da rede.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessPredição de LinksAnálise de Redes SociaisRecuperação de InformaçãoSimilaridade de ConteúdoRedes de CoautoriaConPredict: Predição de Links em Redes de Coautoria Baseada em Conteúdoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇAO JAMILSON ANTUNES.pdf.jpgDISSERTAÇAO JAMILSON ANTUNES.pdf.jpgGenerated Thumbnailimage/jpeg1308https://repositorio.ufpe.br/bitstream/123456789/12372/5/DISSERTA%c3%87AO%20JAMILSON%20ANTUNES.pdf.jpg1765acd372f990c34da40f126660712dMD55ORIGINALDISSERTAÇAO JAMILSON ANTUNES.pdfDISSERTAÇAO JAMILSON ANTUNES.pdfapplication/pdf1825865https://repositorio.ufpe.br/bitstream/123456789/12372/1/DISSERTA%c3%87AO%20JAMILSON%20ANTUNES.pdf48aaec0f076229795f6ad7e8e7c46878MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/12372/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/12372/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇAO JAMILSON ANTUNES.pdf.txtDISSERTAÇAO JAMILSON ANTUNES.pdf.txtExtracted texttext/plain158956https://repositorio.ufpe.br/bitstream/123456789/12372/4/DISSERTA%c3%87AO%20JAMILSON%20ANTUNES.pdf.txtb2657232f7e18afee215b5c5dca44087MD54123456789/123722019-10-25 04:48:48.239oai:repositorio.ufpe.br:123456789/12372TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:48:48Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv ConPredict: Predição de Links em Redes de Coautoria Baseada em Conteúdo
title ConPredict: Predição de Links em Redes de Coautoria Baseada em Conteúdo
spellingShingle ConPredict: Predição de Links em Redes de Coautoria Baseada em Conteúdo
ANTUNES, Jamilson Batista
Predição de Links
Análise de Redes Sociais
Recuperação de Informação
Similaridade de Conteúdo
Redes de Coautoria
title_short ConPredict: Predição de Links em Redes de Coautoria Baseada em Conteúdo
title_full ConPredict: Predição de Links em Redes de Coautoria Baseada em Conteúdo
title_fullStr ConPredict: Predição de Links em Redes de Coautoria Baseada em Conteúdo
title_full_unstemmed ConPredict: Predição de Links em Redes de Coautoria Baseada em Conteúdo
title_sort ConPredict: Predição de Links em Redes de Coautoria Baseada em Conteúdo
author ANTUNES, Jamilson Batista
author_facet ANTUNES, Jamilson Batista
author_role author
dc.contributor.author.fl_str_mv ANTUNES, Jamilson Batista
dc.contributor.advisor1.fl_str_mv BARROS, Flavia de Almeida
contributor_str_mv BARROS, Flavia de Almeida
dc.subject.por.fl_str_mv Predição de Links
Análise de Redes Sociais
Recuperação de Informação
Similaridade de Conteúdo
Redes de Coautoria
topic Predição de Links
Análise de Redes Sociais
Recuperação de Informação
Similaridade de Conteúdo
Redes de Coautoria
description A predição de relacionamentos (Link Prediction) é uma subárea da Mineração de Links e uma das tarefas associadas à Análise de Redes Sociais. Seu objetivo é predizer o surgimento de relacionamentos futuros entre os nós em uma rede social. Este trabalho tem como foco a análise de redes de coautoria, que são um tipo particular de rede de relacionamentos. Já foram propostos muitos métodos para lidar com problemas de predição de links em redes de coautoria. A maioria deles consiste na análise da estrutura da rede através do uso de alguma métrica. Assim, esses trabalhos limitam-se a analisar a rede levando em consideração apenas sua topologia, sem considerar a similaridade do conteúdo dos nós. Este trabalho propõe a utilização de uma abordagem híbrida (baseada na topologia da rede e a baseada em conteúdo) para predição de links em redes de coautoria. O método proposto inicialmente analisa a estrutura da rede atual, e propõe uma lista de links futuros (pares de autores candidatos a colaborarem no futuro) com base na distância entre os nós da rede atual (análise baseada em padrões estruturais da rede). Apenas nós com distância máxima de dois farão parte dessa lista. A seguir, o método proposto calcula a similaridade de conteúdo de cada par de nós (links) nessa lista inicial (análise baseada em similaridade de conteúdo). Apenas os pares de nós que alcançarem o limiar de similaridade adotado (parametrizável) serão propostos como links futuros. Aqui, a análise de similaridade de conteúdo leva em conta os títulos e resumos dos trabalhos publicados por cada autor. Basicamente, o método trabalha com três redes de coautorias: a rede inicial, usada para predição de novos links (chamada nesse trabalho de rede de Coautoria A), uma rede de validação (rede de Coautoria B) e a rede predita (rede de Coautoria C). Nos experimentos realizados, as redes A e B foram extraídas a partir de um repositório de publicações. A rede de Coautoria A (rede inicial) foi gerada a partir de um intervalo de três anos de publicações cientificas, e a rede de Coautoria B (rede futura real) considerava os três anos consecutivos. A rede de Coautoria C predita segundo o método proposto foi comparada com a rede B, a fim de medirmos a performance do nosso método. Os experimentos realizados com quatro sub-redes reais demonstraram que, em geral, o método obteve desempenho satisfatório, tendo obtido melhor resultado sem o uso de Stemming (método para redução de uma palavra ao seu radical, removendo as desinências, afixos, e vogais temáticas) na fase de processamento do conteúdo textual de cada nó da rede.
publishDate 2013
dc.date.issued.fl_str_mv 2013-06-18
dc.date.accessioned.fl_str_mv 2015-03-13T12:59:16Z
dc.date.available.fl_str_mv 2015-03-13T12:59:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/12372
dc.identifier.dark.fl_str_mv ark:/64986/001300000qd8g
url https://repositorio.ufpe.br/handle/123456789/12372
identifier_str_mv ark:/64986/001300000qd8g
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/12372/5/DISSERTA%c3%87AO%20JAMILSON%20ANTUNES.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/12372/1/DISSERTA%c3%87AO%20JAMILSON%20ANTUNES.pdf
https://repositorio.ufpe.br/bitstream/123456789/12372/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/12372/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/12372/4/DISSERTA%c3%87AO%20JAMILSON%20ANTUNES.pdf.txt
bitstream.checksum.fl_str_mv 1765acd372f990c34da40f126660712d
48aaec0f076229795f6ad7e8e7c46878
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
b2657232f7e18afee215b5c5dca44087
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172885501706240