Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000003t3g |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/45862 |
Resumo: | The aim of this thesis is to deal, of the point of view of viscosity solutions, with a discontinuous Hamilton-Jacobi equation in the whole euclidian N-dimensional space where the discontinuity is located on an hyperplane. The typical questions that arise this directions are concern the existence and uniqueness of solutions, and of course the definition itself of solution. Here we consider viscosity solutions in the sense of Ishii. Since we consider convex Hamiltonians, we can also associate the problem to a control problem with specific cost and dynamics given on each side of the hyperplane. We assume that those are Lipshichitz continuous but potentially unbounded, as well as the control spaces. Using Bellman’s approach we construct two value functions which turn out to be the minimal and maximal solutions in the sense of Ishii. Moreover, we also build a whole family of value functions, which are still solutions in the sense of Ishii and connect continuously the minimal solution to the maximal one. |
id |
UFPE_4b420889795ee39931f7e143bc002d60 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/45862 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
REIS, Robson Carlos da Silvahttp://lattes.cnpq.br/9848549153106047http://lattes.cnpq.br/3682836744237780SASTRE-GÓMEZ, SilviaCHASSEIGNE, Emmanuel2022-08-22T13:15:23Z2022-08-22T13:15:23Z2022-04-29REIS, Robson Carlos da Silva. Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities. 2022. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/45862ark:/64986/0013000003t3gThe aim of this thesis is to deal, of the point of view of viscosity solutions, with a discontinuous Hamilton-Jacobi equation in the whole euclidian N-dimensional space where the discontinuity is located on an hyperplane. The typical questions that arise this directions are concern the existence and uniqueness of solutions, and of course the definition itself of solution. Here we consider viscosity solutions in the sense of Ishii. Since we consider convex Hamiltonians, we can also associate the problem to a control problem with specific cost and dynamics given on each side of the hyperplane. We assume that those are Lipshichitz continuous but potentially unbounded, as well as the control spaces. Using Bellman’s approach we construct two value functions which turn out to be the minimal and maximal solutions in the sense of Ishii. Moreover, we also build a whole family of value functions, which are still solutions in the sense of Ishii and connect continuously the minimal solution to the maximal one.CNPqO objetivo desta tese é lidar, do ponto de vista de soluções viscosas, com descontinuidades da equação de Hamilton-Jacobi no espaço euclidiano de dimensão N, onde a descontinuidade está localizada em um hiperplano. As típicas questões que surgem neste sentido estão relaci- onadas com a existência e unicidade de soluções, e naturalmente sobre a própria definição de solução. Nós consideramos soluções de viscosidade no sentido de Ishii. Desde que nós consi- deramos Hamiltonianos convexos, podemos associar o problema a um problema de controle com custo e dinâmica específicos dados em cada lado do hiperplano. Assumimos que esses são Lipschitz, mas potencialmente ilimitados, assim como os espaços de controle. Usando a abordagem de Bellman, construímos duas funções de valor que se tornam as soluções mínima e máxima no sentido de Ishii. Além disso, também construímos toda uma família de funções valores, que ainda são soluções no sentido de Ishii e conectam continuamente a solução mínima à máxima.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessAnáliseDinâmica descontínuaEquação de Hamilton-Jacobi- BellmaSoluções viscosasProblema de IshiiUnbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuitiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/45862/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/45862/3/license.txt6928b9260b07fb2755249a5ca9903395MD53ORIGINALTESE Robson Carlos da Silva Reis.pdfTESE Robson Carlos da Silva Reis.pdfapplication/pdf1466718https://repositorio.ufpe.br/bitstream/123456789/45862/1/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf5a70aeee71ee56f164f9fc24fcf19ae1MD51TEXTTESE Robson Carlos da Silva Reis.pdf.txtTESE Robson Carlos da Silva Reis.pdf.txtExtracted texttext/plain280995https://repositorio.ufpe.br/bitstream/123456789/45862/4/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf.txt832b636d85f1625504d4e16f9069ca69MD54THUMBNAILTESE Robson Carlos da Silva Reis.pdf.jpgTESE Robson Carlos da Silva Reis.pdf.jpgGenerated Thumbnailimage/jpeg1232https://repositorio.ufpe.br/bitstream/123456789/45862/5/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf.jpg9f46ef32545ae66d290020fda404b786MD55123456789/458622022-08-23 02:23:37.718oai:repositorio.ufpe.br:123456789/45862VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-08-23T05:23:37Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities |
title |
Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities |
spellingShingle |
Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities REIS, Robson Carlos da Silva Análise Dinâmica descontínua Equação de Hamilton-Jacobi- Bellma Soluções viscosas Problema de Ishii |
title_short |
Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities |
title_full |
Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities |
title_fullStr |
Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities |
title_full_unstemmed |
Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities |
title_sort |
Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities |
author |
REIS, Robson Carlos da Silva |
author_facet |
REIS, Robson Carlos da Silva |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9848549153106047 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3682836744237780 |
dc.contributor.author.fl_str_mv |
REIS, Robson Carlos da Silva |
dc.contributor.advisor1.fl_str_mv |
SASTRE-GÓMEZ, Silvia |
dc.contributor.advisor-co1.fl_str_mv |
CHASSEIGNE, Emmanuel |
contributor_str_mv |
SASTRE-GÓMEZ, Silvia CHASSEIGNE, Emmanuel |
dc.subject.por.fl_str_mv |
Análise Dinâmica descontínua Equação de Hamilton-Jacobi- Bellma Soluções viscosas Problema de Ishii |
topic |
Análise Dinâmica descontínua Equação de Hamilton-Jacobi- Bellma Soluções viscosas Problema de Ishii |
description |
The aim of this thesis is to deal, of the point of view of viscosity solutions, with a discontinuous Hamilton-Jacobi equation in the whole euclidian N-dimensional space where the discontinuity is located on an hyperplane. The typical questions that arise this directions are concern the existence and uniqueness of solutions, and of course the definition itself of solution. Here we consider viscosity solutions in the sense of Ishii. Since we consider convex Hamiltonians, we can also associate the problem to a control problem with specific cost and dynamics given on each side of the hyperplane. We assume that those are Lipshichitz continuous but potentially unbounded, as well as the control spaces. Using Bellman’s approach we construct two value functions which turn out to be the minimal and maximal solutions in the sense of Ishii. Moreover, we also build a whole family of value functions, which are still solutions in the sense of Ishii and connect continuously the minimal solution to the maximal one. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-08-22T13:15:23Z |
dc.date.available.fl_str_mv |
2022-08-22T13:15:23Z |
dc.date.issued.fl_str_mv |
2022-04-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
REIS, Robson Carlos da Silva. Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities. 2022. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/45862 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000003t3g |
identifier_str_mv |
REIS, Robson Carlos da Silva. Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities. 2022. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/0013000003t3g |
url |
https://repositorio.ufpe.br/handle/123456789/45862 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/45862/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/45862/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/45862/1/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf https://repositorio.ufpe.br/bitstream/123456789/45862/4/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/45862/5/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf.jpg |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 6928b9260b07fb2755249a5ca9903395 5a70aeee71ee56f164f9fc24fcf19ae1 832b636d85f1625504d4e16f9069ca69 9f46ef32545ae66d290020fda404b786 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172713513222144 |