Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities

Detalhes bibliográficos
Autor(a) principal: REIS, Robson Carlos da Silva
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000003t3g
Texto Completo: https://repositorio.ufpe.br/handle/123456789/45862
Resumo: The aim of this thesis is to deal, of the point of view of viscosity solutions, with a discontinuous Hamilton-Jacobi equation in the whole euclidian N-dimensional space where the discontinuity is located on an hyperplane. The typical questions that arise this directions are concern the existence and uniqueness of solutions, and of course the definition itself of solution. Here we consider viscosity solutions in the sense of Ishii. Since we consider convex Hamiltonians, we can also associate the problem to a control problem with specific cost and dynamics given on each side of the hyperplane. We assume that those are Lipshichitz continuous but potentially unbounded, as well as the control spaces. Using Bellman’s approach we construct two value functions which turn out to be the minimal and maximal solutions in the sense of Ishii. Moreover, we also build a whole family of value functions, which are still solutions in the sense of Ishii and connect continuously the minimal solution to the maximal one.
id UFPE_4b420889795ee39931f7e143bc002d60
oai_identifier_str oai:repositorio.ufpe.br:123456789/45862
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling REIS, Robson Carlos da Silvahttp://lattes.cnpq.br/9848549153106047http://lattes.cnpq.br/3682836744237780SASTRE-GÓMEZ, SilviaCHASSEIGNE, Emmanuel2022-08-22T13:15:23Z2022-08-22T13:15:23Z2022-04-29REIS, Robson Carlos da Silva. Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities. 2022. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/45862ark:/64986/0013000003t3gThe aim of this thesis is to deal, of the point of view of viscosity solutions, with a discontinuous Hamilton-Jacobi equation in the whole euclidian N-dimensional space where the discontinuity is located on an hyperplane. The typical questions that arise this directions are concern the existence and uniqueness of solutions, and of course the definition itself of solution. Here we consider viscosity solutions in the sense of Ishii. Since we consider convex Hamiltonians, we can also associate the problem to a control problem with specific cost and dynamics given on each side of the hyperplane. We assume that those are Lipshichitz continuous but potentially unbounded, as well as the control spaces. Using Bellman’s approach we construct two value functions which turn out to be the minimal and maximal solutions in the sense of Ishii. Moreover, we also build a whole family of value functions, which are still solutions in the sense of Ishii and connect continuously the minimal solution to the maximal one.CNPqO objetivo desta tese é lidar, do ponto de vista de soluções viscosas, com descontinuidades da equação de Hamilton-Jacobi no espaço euclidiano de dimensão N, onde a descontinuidade está localizada em um hiperplano. As típicas questões que surgem neste sentido estão relaci- onadas com a existência e unicidade de soluções, e naturalmente sobre a própria definição de solução. Nós consideramos soluções de viscosidade no sentido de Ishii. Desde que nós consi- deramos Hamiltonianos convexos, podemos associar o problema a um problema de controle com custo e dinâmica específicos dados em cada lado do hiperplano. Assumimos que esses são Lipschitz, mas potencialmente ilimitados, assim como os espaços de controle. Usando a abordagem de Bellman, construímos duas funções de valor que se tornam as soluções mínima e máxima no sentido de Ishii. Além disso, também construímos toda uma família de funções valores, que ainda são soluções no sentido de Ishii e conectam continuamente a solução mínima à máxima.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessAnáliseDinâmica descontínuaEquação de Hamilton-Jacobi- BellmaSoluções viscosasProblema de IshiiUnbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuitiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/45862/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/45862/3/license.txt6928b9260b07fb2755249a5ca9903395MD53ORIGINALTESE Robson Carlos da Silva Reis.pdfTESE Robson Carlos da Silva Reis.pdfapplication/pdf1466718https://repositorio.ufpe.br/bitstream/123456789/45862/1/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf5a70aeee71ee56f164f9fc24fcf19ae1MD51TEXTTESE Robson Carlos da Silva Reis.pdf.txtTESE Robson Carlos da Silva Reis.pdf.txtExtracted texttext/plain280995https://repositorio.ufpe.br/bitstream/123456789/45862/4/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf.txt832b636d85f1625504d4e16f9069ca69MD54THUMBNAILTESE Robson Carlos da Silva Reis.pdf.jpgTESE Robson Carlos da Silva Reis.pdf.jpgGenerated Thumbnailimage/jpeg1232https://repositorio.ufpe.br/bitstream/123456789/45862/5/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf.jpg9f46ef32545ae66d290020fda404b786MD55123456789/458622022-08-23 02:23:37.718oai:repositorio.ufpe.br:123456789/45862VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-08-23T05:23:37Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities
title Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities
spellingShingle Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities
REIS, Robson Carlos da Silva
Análise
Dinâmica descontínua
Equação de Hamilton-Jacobi- Bellma
Soluções viscosas
Problema de Ishii
title_short Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities
title_full Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities
title_fullStr Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities
title_full_unstemmed Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities
title_sort Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities
author REIS, Robson Carlos da Silva
author_facet REIS, Robson Carlos da Silva
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9848549153106047
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3682836744237780
dc.contributor.author.fl_str_mv REIS, Robson Carlos da Silva
dc.contributor.advisor1.fl_str_mv SASTRE-GÓMEZ, Silvia
dc.contributor.advisor-co1.fl_str_mv CHASSEIGNE, Emmanuel
contributor_str_mv SASTRE-GÓMEZ, Silvia
CHASSEIGNE, Emmanuel
dc.subject.por.fl_str_mv Análise
Dinâmica descontínua
Equação de Hamilton-Jacobi- Bellma
Soluções viscosas
Problema de Ishii
topic Análise
Dinâmica descontínua
Equação de Hamilton-Jacobi- Bellma
Soluções viscosas
Problema de Ishii
description The aim of this thesis is to deal, of the point of view of viscosity solutions, with a discontinuous Hamilton-Jacobi equation in the whole euclidian N-dimensional space where the discontinuity is located on an hyperplane. The typical questions that arise this directions are concern the existence and uniqueness of solutions, and of course the definition itself of solution. Here we consider viscosity solutions in the sense of Ishii. Since we consider convex Hamiltonians, we can also associate the problem to a control problem with specific cost and dynamics given on each side of the hyperplane. We assume that those are Lipshichitz continuous but potentially unbounded, as well as the control spaces. Using Bellman’s approach we construct two value functions which turn out to be the minimal and maximal solutions in the sense of Ishii. Moreover, we also build a whole family of value functions, which are still solutions in the sense of Ishii and connect continuously the minimal solution to the maximal one.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-08-22T13:15:23Z
dc.date.available.fl_str_mv 2022-08-22T13:15:23Z
dc.date.issued.fl_str_mv 2022-04-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv REIS, Robson Carlos da Silva. Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities. 2022. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/45862
dc.identifier.dark.fl_str_mv ark:/64986/0013000003t3g
identifier_str_mv REIS, Robson Carlos da Silva. Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities. 2022. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022.
ark:/64986/0013000003t3g
url https://repositorio.ufpe.br/handle/123456789/45862
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Matematica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/45862/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/45862/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/45862/1/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf
https://repositorio.ufpe.br/bitstream/123456789/45862/4/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/45862/5/TESE%20Robson%20Carlos%20da%20Silva%20Reis.pdf.jpg
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
6928b9260b07fb2755249a5ca9903395
5a70aeee71ee56f164f9fc24fcf19ae1
832b636d85f1625504d4e16f9069ca69
9f46ef32545ae66d290020fda404b786
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172713513222144