SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais

Detalhes bibliográficos
Autor(a) principal: Silva, Edeilson Milhomem da
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000005qzb
Texto Completo: https://repositorio.ufpe.br/handle/123456789/1835
Resumo: As organizações, com o intuito de aumentarem o seu grau de competitividade no mercado, vêm a cada instante buscando novas formas de evoluir a produtividade e a qualidade dos produtos desenvolvidos, além da diminuição de custos que está diretamente relacionada ao aumento do faturamento líquido. Para que tais objetivos possam ser alcançados é primordial explorar ao máximo o potencial de seus colaboradores e os possíveis relacionamentos que esses colaboradores têm uns com os outros, ou seja, encontrar e partilhar conhecimento tácito. Como o conhecimento tático está na mente das pessoas, é difícil de ser formalizado e documentado, por isso, o ideal seria identificar e recomendar a pessoa que detém o conhecimento. Diante disso, a presente dissertação apresenta o Sistema de Recomendação de Especialistas SWEETS e a sua implantação no ambiente a.m.i.g.o.s., uma plataforma de gestão de conhecimento baseada em conceitos voltados às redes sociais. O SWEETS foi desenvolvido em duas versões, 1.0 e 2.0. A versão 1.0, de forma pró-ativa, aproxima pessoas com especialidades em comum, ora pelos seus conhecimentos (perfil de escrita), ora pelos seus interesses (perfil de leitura). Já a versão 2.0 do SWEETS não atua de forma pró-ativa, ou seja, é necessário que haja a requisição de um usuário especialista em determinada área, e é baseada em folksonomia para extração de uma ontologia, fundamental para identificar as especialidades das pessoas de forma mais eficaz. Esta ontologia é refletida pela co-ocorrência das tags (conceitos) em relação aos itens (instâncias) e é independente de domínio principal contribuição dessa dissertação. A implantação do SWEETS no a.m.i.g.o.s. visa trazer benefícios como: minimizar o problema de comunicação na corporação, prover um incentivo ao conhecimento social e partilhar conhecimento; proporcionando, assim, à empresa, a utilização mais eficaz dos conhecimentos de seus colaboradores
id UFPE_4eb9c82addcc49556b43ea9d68273605
oai_identifier_str oai:repositorio.ufpe.br:123456789/1835
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Silva, Edeilson Milhomem daMeira, Silvio Romero de Lemos2014-06-12T15:52:44Z2014-06-12T15:52:44Z2009-01-31Milhomem da Silva, Edeilson; Romero de Lemos Meira, Silvio. SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.https://repositorio.ufpe.br/handle/123456789/1835ark:/64986/0013000005qzbAs organizações, com o intuito de aumentarem o seu grau de competitividade no mercado, vêm a cada instante buscando novas formas de evoluir a produtividade e a qualidade dos produtos desenvolvidos, além da diminuição de custos que está diretamente relacionada ao aumento do faturamento líquido. Para que tais objetivos possam ser alcançados é primordial explorar ao máximo o potencial de seus colaboradores e os possíveis relacionamentos que esses colaboradores têm uns com os outros, ou seja, encontrar e partilhar conhecimento tácito. Como o conhecimento tático está na mente das pessoas, é difícil de ser formalizado e documentado, por isso, o ideal seria identificar e recomendar a pessoa que detém o conhecimento. Diante disso, a presente dissertação apresenta o Sistema de Recomendação de Especialistas SWEETS e a sua implantação no ambiente a.m.i.g.o.s., uma plataforma de gestão de conhecimento baseada em conceitos voltados às redes sociais. O SWEETS foi desenvolvido em duas versões, 1.0 e 2.0. A versão 1.0, de forma pró-ativa, aproxima pessoas com especialidades em comum, ora pelos seus conhecimentos (perfil de escrita), ora pelos seus interesses (perfil de leitura). Já a versão 2.0 do SWEETS não atua de forma pró-ativa, ou seja, é necessário que haja a requisição de um usuário especialista em determinada área, e é baseada em folksonomia para extração de uma ontologia, fundamental para identificar as especialidades das pessoas de forma mais eficaz. Esta ontologia é refletida pela co-ocorrência das tags (conceitos) em relação aos itens (instâncias) e é independente de domínio principal contribuição dessa dissertação. A implantação do SWEETS no a.m.i.g.o.s. visa trazer benefícios como: minimizar o problema de comunicação na corporação, prover um incentivo ao conhecimento social e partilhar conhecimento; proporcionando, assim, à empresa, a utilização mais eficaz dos conhecimentos de seus colaboradoresConselho Nacional de Desenvolvimento Científico e TecnológicoengUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFolksonomyWeb-Based Social NetworkRecommendation systemsOntology.SWEETS: um sistema de recomendação de especialistas aplicado a redes sociaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo1844_1.pdf.jpgarquivo1844_1.pdf.jpgGenerated Thumbnailimage/jpeg1407https://repositorio.ufpe.br/bitstream/123456789/1835/4/arquivo1844_1.pdf.jpg7e098c80d8f44c713e62ba08ec5c867bMD54ORIGINALarquivo1844_1.pdfapplication/pdf1599198https://repositorio.ufpe.br/bitstream/123456789/1835/1/arquivo1844_1.pdf84a19c5d7769a76fba813a0cac740509MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/1835/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo1844_1.pdf.txtarquivo1844_1.pdf.txtExtracted texttext/plain259020https://repositorio.ufpe.br/bitstream/123456789/1835/3/arquivo1844_1.pdf.txt3ea4e009a98a76a1e7db5413de532031MD53123456789/18352019-10-25 16:03:41.944oai:repositorio.ufpe.br:123456789/1835Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T19:03:41Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais
title SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais
spellingShingle SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais
Silva, Edeilson Milhomem da
Folksonomy
Web-Based Social Network
Recommendation systems
Ontology.
title_short SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais
title_full SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais
title_fullStr SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais
title_full_unstemmed SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais
title_sort SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais
author Silva, Edeilson Milhomem da
author_facet Silva, Edeilson Milhomem da
author_role author
dc.contributor.author.fl_str_mv Silva, Edeilson Milhomem da
dc.contributor.advisor1.fl_str_mv Meira, Silvio Romero de Lemos
contributor_str_mv Meira, Silvio Romero de Lemos
dc.subject.por.fl_str_mv Folksonomy
Web-Based Social Network
Recommendation systems
Ontology.
topic Folksonomy
Web-Based Social Network
Recommendation systems
Ontology.
description As organizações, com o intuito de aumentarem o seu grau de competitividade no mercado, vêm a cada instante buscando novas formas de evoluir a produtividade e a qualidade dos produtos desenvolvidos, além da diminuição de custos que está diretamente relacionada ao aumento do faturamento líquido. Para que tais objetivos possam ser alcançados é primordial explorar ao máximo o potencial de seus colaboradores e os possíveis relacionamentos que esses colaboradores têm uns com os outros, ou seja, encontrar e partilhar conhecimento tácito. Como o conhecimento tático está na mente das pessoas, é difícil de ser formalizado e documentado, por isso, o ideal seria identificar e recomendar a pessoa que detém o conhecimento. Diante disso, a presente dissertação apresenta o Sistema de Recomendação de Especialistas SWEETS e a sua implantação no ambiente a.m.i.g.o.s., uma plataforma de gestão de conhecimento baseada em conceitos voltados às redes sociais. O SWEETS foi desenvolvido em duas versões, 1.0 e 2.0. A versão 1.0, de forma pró-ativa, aproxima pessoas com especialidades em comum, ora pelos seus conhecimentos (perfil de escrita), ora pelos seus interesses (perfil de leitura). Já a versão 2.0 do SWEETS não atua de forma pró-ativa, ou seja, é necessário que haja a requisição de um usuário especialista em determinada área, e é baseada em folksonomia para extração de uma ontologia, fundamental para identificar as especialidades das pessoas de forma mais eficaz. Esta ontologia é refletida pela co-ocorrência das tags (conceitos) em relação aos itens (instâncias) e é independente de domínio principal contribuição dessa dissertação. A implantação do SWEETS no a.m.i.g.o.s. visa trazer benefícios como: minimizar o problema de comunicação na corporação, prover um incentivo ao conhecimento social e partilhar conhecimento; proporcionando, assim, à empresa, a utilização mais eficaz dos conhecimentos de seus colaboradores
publishDate 2009
dc.date.issued.fl_str_mv 2009-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T15:52:44Z
dc.date.available.fl_str_mv 2014-06-12T15:52:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Milhomem da Silva, Edeilson; Romero de Lemos Meira, Silvio. SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/1835
dc.identifier.dark.fl_str_mv ark:/64986/0013000005qzb
identifier_str_mv Milhomem da Silva, Edeilson; Romero de Lemos Meira, Silvio. SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.
ark:/64986/0013000005qzb
url https://repositorio.ufpe.br/handle/123456789/1835
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/1835/4/arquivo1844_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/1835/1/arquivo1844_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/1835/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/1835/3/arquivo1844_1.pdf.txt
bitstream.checksum.fl_str_mv 7e098c80d8f44c713e62ba08ec5c867b
84a19c5d7769a76fba813a0cac740509
8a4605be74aa9ea9d79846c1fba20a33
3ea4e009a98a76a1e7db5413de532031
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172732550119424