SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000005qzb |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/1835 |
Resumo: | As organizações, com o intuito de aumentarem o seu grau de competitividade no mercado, vêm a cada instante buscando novas formas de evoluir a produtividade e a qualidade dos produtos desenvolvidos, além da diminuição de custos que está diretamente relacionada ao aumento do faturamento líquido. Para que tais objetivos possam ser alcançados é primordial explorar ao máximo o potencial de seus colaboradores e os possíveis relacionamentos que esses colaboradores têm uns com os outros, ou seja, encontrar e partilhar conhecimento tácito. Como o conhecimento tático está na mente das pessoas, é difícil de ser formalizado e documentado, por isso, o ideal seria identificar e recomendar a pessoa que detém o conhecimento. Diante disso, a presente dissertação apresenta o Sistema de Recomendação de Especialistas SWEETS e a sua implantação no ambiente a.m.i.g.o.s., uma plataforma de gestão de conhecimento baseada em conceitos voltados às redes sociais. O SWEETS foi desenvolvido em duas versões, 1.0 e 2.0. A versão 1.0, de forma pró-ativa, aproxima pessoas com especialidades em comum, ora pelos seus conhecimentos (perfil de escrita), ora pelos seus interesses (perfil de leitura). Já a versão 2.0 do SWEETS não atua de forma pró-ativa, ou seja, é necessário que haja a requisição de um usuário especialista em determinada área, e é baseada em folksonomia para extração de uma ontologia, fundamental para identificar as especialidades das pessoas de forma mais eficaz. Esta ontologia é refletida pela co-ocorrência das tags (conceitos) em relação aos itens (instâncias) e é independente de domínio principal contribuição dessa dissertação. A implantação do SWEETS no a.m.i.g.o.s. visa trazer benefícios como: minimizar o problema de comunicação na corporação, prover um incentivo ao conhecimento social e partilhar conhecimento; proporcionando, assim, à empresa, a utilização mais eficaz dos conhecimentos de seus colaboradores |
id |
UFPE_4eb9c82addcc49556b43ea9d68273605 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/1835 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Silva, Edeilson Milhomem daMeira, Silvio Romero de Lemos2014-06-12T15:52:44Z2014-06-12T15:52:44Z2009-01-31Milhomem da Silva, Edeilson; Romero de Lemos Meira, Silvio. SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.https://repositorio.ufpe.br/handle/123456789/1835ark:/64986/0013000005qzbAs organizações, com o intuito de aumentarem o seu grau de competitividade no mercado, vêm a cada instante buscando novas formas de evoluir a produtividade e a qualidade dos produtos desenvolvidos, além da diminuição de custos que está diretamente relacionada ao aumento do faturamento líquido. Para que tais objetivos possam ser alcançados é primordial explorar ao máximo o potencial de seus colaboradores e os possíveis relacionamentos que esses colaboradores têm uns com os outros, ou seja, encontrar e partilhar conhecimento tácito. Como o conhecimento tático está na mente das pessoas, é difícil de ser formalizado e documentado, por isso, o ideal seria identificar e recomendar a pessoa que detém o conhecimento. Diante disso, a presente dissertação apresenta o Sistema de Recomendação de Especialistas SWEETS e a sua implantação no ambiente a.m.i.g.o.s., uma plataforma de gestão de conhecimento baseada em conceitos voltados às redes sociais. O SWEETS foi desenvolvido em duas versões, 1.0 e 2.0. A versão 1.0, de forma pró-ativa, aproxima pessoas com especialidades em comum, ora pelos seus conhecimentos (perfil de escrita), ora pelos seus interesses (perfil de leitura). Já a versão 2.0 do SWEETS não atua de forma pró-ativa, ou seja, é necessário que haja a requisição de um usuário especialista em determinada área, e é baseada em folksonomia para extração de uma ontologia, fundamental para identificar as especialidades das pessoas de forma mais eficaz. Esta ontologia é refletida pela co-ocorrência das tags (conceitos) em relação aos itens (instâncias) e é independente de domínio principal contribuição dessa dissertação. A implantação do SWEETS no a.m.i.g.o.s. visa trazer benefícios como: minimizar o problema de comunicação na corporação, prover um incentivo ao conhecimento social e partilhar conhecimento; proporcionando, assim, à empresa, a utilização mais eficaz dos conhecimentos de seus colaboradoresConselho Nacional de Desenvolvimento Científico e TecnológicoengUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFolksonomyWeb-Based Social NetworkRecommendation systemsOntology.SWEETS: um sistema de recomendação de especialistas aplicado a redes sociaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo1844_1.pdf.jpgarquivo1844_1.pdf.jpgGenerated Thumbnailimage/jpeg1407https://repositorio.ufpe.br/bitstream/123456789/1835/4/arquivo1844_1.pdf.jpg7e098c80d8f44c713e62ba08ec5c867bMD54ORIGINALarquivo1844_1.pdfapplication/pdf1599198https://repositorio.ufpe.br/bitstream/123456789/1835/1/arquivo1844_1.pdf84a19c5d7769a76fba813a0cac740509MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/1835/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo1844_1.pdf.txtarquivo1844_1.pdf.txtExtracted texttext/plain259020https://repositorio.ufpe.br/bitstream/123456789/1835/3/arquivo1844_1.pdf.txt3ea4e009a98a76a1e7db5413de532031MD53123456789/18352019-10-25 16:03:41.944oai:repositorio.ufpe.br:123456789/1835Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T19:03:41Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais |
title |
SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais |
spellingShingle |
SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais Silva, Edeilson Milhomem da Folksonomy Web-Based Social Network Recommendation systems Ontology. |
title_short |
SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais |
title_full |
SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais |
title_fullStr |
SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais |
title_full_unstemmed |
SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais |
title_sort |
SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais |
author |
Silva, Edeilson Milhomem da |
author_facet |
Silva, Edeilson Milhomem da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Edeilson Milhomem da |
dc.contributor.advisor1.fl_str_mv |
Meira, Silvio Romero de Lemos |
contributor_str_mv |
Meira, Silvio Romero de Lemos |
dc.subject.por.fl_str_mv |
Folksonomy Web-Based Social Network Recommendation systems Ontology. |
topic |
Folksonomy Web-Based Social Network Recommendation systems Ontology. |
description |
As organizações, com o intuito de aumentarem o seu grau de competitividade no mercado, vêm a cada instante buscando novas formas de evoluir a produtividade e a qualidade dos produtos desenvolvidos, além da diminuição de custos que está diretamente relacionada ao aumento do faturamento líquido. Para que tais objetivos possam ser alcançados é primordial explorar ao máximo o potencial de seus colaboradores e os possíveis relacionamentos que esses colaboradores têm uns com os outros, ou seja, encontrar e partilhar conhecimento tácito. Como o conhecimento tático está na mente das pessoas, é difícil de ser formalizado e documentado, por isso, o ideal seria identificar e recomendar a pessoa que detém o conhecimento. Diante disso, a presente dissertação apresenta o Sistema de Recomendação de Especialistas SWEETS e a sua implantação no ambiente a.m.i.g.o.s., uma plataforma de gestão de conhecimento baseada em conceitos voltados às redes sociais. O SWEETS foi desenvolvido em duas versões, 1.0 e 2.0. A versão 1.0, de forma pró-ativa, aproxima pessoas com especialidades em comum, ora pelos seus conhecimentos (perfil de escrita), ora pelos seus interesses (perfil de leitura). Já a versão 2.0 do SWEETS não atua de forma pró-ativa, ou seja, é necessário que haja a requisição de um usuário especialista em determinada área, e é baseada em folksonomia para extração de uma ontologia, fundamental para identificar as especialidades das pessoas de forma mais eficaz. Esta ontologia é refletida pela co-ocorrência das tags (conceitos) em relação aos itens (instâncias) e é independente de domínio principal contribuição dessa dissertação. A implantação do SWEETS no a.m.i.g.o.s. visa trazer benefícios como: minimizar o problema de comunicação na corporação, prover um incentivo ao conhecimento social e partilhar conhecimento; proporcionando, assim, à empresa, a utilização mais eficaz dos conhecimentos de seus colaboradores |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:52:44Z |
dc.date.available.fl_str_mv |
2014-06-12T15:52:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Milhomem da Silva, Edeilson; Romero de Lemos Meira, Silvio. SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/1835 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000005qzb |
identifier_str_mv |
Milhomem da Silva, Edeilson; Romero de Lemos Meira, Silvio. SWEETS: um sistema de recomendação de especialistas aplicado a redes sociais. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009. ark:/64986/0013000005qzb |
url |
https://repositorio.ufpe.br/handle/123456789/1835 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/1835/4/arquivo1844_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/1835/1/arquivo1844_1.pdf https://repositorio.ufpe.br/bitstream/123456789/1835/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/1835/3/arquivo1844_1.pdf.txt |
bitstream.checksum.fl_str_mv |
7e098c80d8f44c713e62ba08ec5c867b 84a19c5d7769a76fba813a0cac740509 8a4605be74aa9ea9d79846c1fba20a33 3ea4e009a98a76a1e7db5413de532031 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172732550119424 |