Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000kr6w |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/1435 |
Resumo: | Data Mining surgiu da necessidade de extração do conhecimento a partir de volumosas massas de dados geradas pelas empresas/instituições. Com o crescimento da área e o aumento do poder de processamento dos computadores, as organizações que prestam serviços em KDD (Knowledge Discovery in Database) têm guardado, cada vez mais, um grande número de documentos e processos referentes a projetos executados no passado. Por outro lado, hoje, o desenvolvimento de projetos de Data Mining exige do especialista o uso de diversas ferramentas, linguagens de programação e metodologias associadas à sua experiência para resolução do problema. Um dos maiores problemas práticos de KDD é como prover a interoperabilidade entre diferentes plataformas existentes, de tal forma que os processos fiquem centralizados e documentados em um único ambiente. Outro grande problema, hoje, é a falta de reuso de conhecimento devido à complexidade e forte dependência do usuário. Neste contexto, as experiências adquiridas em projetos anteriores não são devidamente documentadas, gerenciadas e controladas, gerando como conseqüência a repetição de erros dos projetos anteriores. Em outras palavras, outro grande problema prático é a falta de plataformas capazes de fazer o reuso do conhecimento adquirido em projetos realizados no passado. O principal objetivo deste trabalho é criar um framework híbrido para desenvolvimento de soluções em Mineração de Dados que integra diversas ferramentas disponíveis no mercado e disponibiliza um ambiente integrado para reuso do conhecimento na área de KDD. Este ambiente possibilita a centralização e padronização dos artefatos gerados ao longo do processo de KDD, assim como aproveita os melhores recursos de cada ferramenta de mercado disponível. Para validação do framework foram coletados os metadados de 69 projetos reais de mineração de dados, 61 lições aprendidas dos profissionais que trabalharam nestes projetos e 654 entidades de conhecimento (congressos, softwares, publicações etc) da área de KDD. Os estudos apresentados, principalmente para definição do início do projeto, mostraram ser possível, através do framework, entender as características que levaram os projetos a serem um sucesso ou fracasso. Assim, o framework é um ambiente que assegura o desenvolvimento de projetos em KDD de alta qualidade que atende às expectativas do cliente dentro do tempo e orçamento previstos |
id |
UFPE_51263d38e2921e0c6686311d8f5c0e4e |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/1435 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
CUNHA, Rodrigo Carneiro Leão Vieira daADEODATO, Paulo Jorge Leitão2014-06-12T15:50:08Z2014-06-12T15:50:08Z2009-01-31Carneiro Leão Vieira da Cunha, Rodrigo; Jorge Leitão Adeodato, Paulo. Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados. 2009. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.https://repositorio.ufpe.br/handle/123456789/1435ark:/64986/001300000kr6wData Mining surgiu da necessidade de extração do conhecimento a partir de volumosas massas de dados geradas pelas empresas/instituições. Com o crescimento da área e o aumento do poder de processamento dos computadores, as organizações que prestam serviços em KDD (Knowledge Discovery in Database) têm guardado, cada vez mais, um grande número de documentos e processos referentes a projetos executados no passado. Por outro lado, hoje, o desenvolvimento de projetos de Data Mining exige do especialista o uso de diversas ferramentas, linguagens de programação e metodologias associadas à sua experiência para resolução do problema. Um dos maiores problemas práticos de KDD é como prover a interoperabilidade entre diferentes plataformas existentes, de tal forma que os processos fiquem centralizados e documentados em um único ambiente. Outro grande problema, hoje, é a falta de reuso de conhecimento devido à complexidade e forte dependência do usuário. Neste contexto, as experiências adquiridas em projetos anteriores não são devidamente documentadas, gerenciadas e controladas, gerando como conseqüência a repetição de erros dos projetos anteriores. Em outras palavras, outro grande problema prático é a falta de plataformas capazes de fazer o reuso do conhecimento adquirido em projetos realizados no passado. O principal objetivo deste trabalho é criar um framework híbrido para desenvolvimento de soluções em Mineração de Dados que integra diversas ferramentas disponíveis no mercado e disponibiliza um ambiente integrado para reuso do conhecimento na área de KDD. Este ambiente possibilita a centralização e padronização dos artefatos gerados ao longo do processo de KDD, assim como aproveita os melhores recursos de cada ferramenta de mercado disponível. Para validação do framework foram coletados os metadados de 69 projetos reais de mineração de dados, 61 lições aprendidas dos profissionais que trabalharam nestes projetos e 654 entidades de conhecimento (congressos, softwares, publicações etc) da área de KDD. Os estudos apresentados, principalmente para definição do início do projeto, mostraram ser possível, através do framework, entender as características que levaram os projetos a serem um sucesso ou fracasso. Assim, o framework é um ambiente que assegura o desenvolvimento de projetos em KDD de alta qualidade que atende às expectativas do cliente dentro do tempo e orçamento previstosConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMineração de DadosDescoberta do Conhecimento em Base de DadosProcessos de KDDFrameworkInteroperabilidadeReuso do ConhecimentoMetamineração de dadosFramework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo1928_1.pdf.jpgarquivo1928_1.pdf.jpgGenerated Thumbnailimage/jpeg1380https://repositorio.ufpe.br/bitstream/123456789/1435/4/arquivo1928_1.pdf.jpg1bcbfbc821a3f41db1feedd0f5d4f716MD54ORIGINALarquivo1928_1.pdfapplication/pdf1948940https://repositorio.ufpe.br/bitstream/123456789/1435/1/arquivo1928_1.pdfed1bedfc483f596f442e5ff7208e1ed0MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/1435/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo1928_1.pdf.txtarquivo1928_1.pdf.txtExtracted texttext/plain312597https://repositorio.ufpe.br/bitstream/123456789/1435/3/arquivo1928_1.pdf.txt33bead361c24c226e4a35bbc7456f00bMD53123456789/14352019-10-25 06:46:18.793oai:repositorio.ufpe.br:123456789/1435Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T09:46:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados |
title |
Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados |
spellingShingle |
Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados CUNHA, Rodrigo Carneiro Leão Vieira da Mineração de Dados Descoberta do Conhecimento em Base de Dados Processos de KDD Framework Interoperabilidade Reuso do Conhecimento Metamineração de dados |
title_short |
Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados |
title_full |
Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados |
title_fullStr |
Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados |
title_full_unstemmed |
Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados |
title_sort |
Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados |
author |
CUNHA, Rodrigo Carneiro Leão Vieira da |
author_facet |
CUNHA, Rodrigo Carneiro Leão Vieira da |
author_role |
author |
dc.contributor.author.fl_str_mv |
CUNHA, Rodrigo Carneiro Leão Vieira da |
dc.contributor.advisor1.fl_str_mv |
ADEODATO, Paulo Jorge Leitão |
contributor_str_mv |
ADEODATO, Paulo Jorge Leitão |
dc.subject.por.fl_str_mv |
Mineração de Dados Descoberta do Conhecimento em Base de Dados Processos de KDD Framework Interoperabilidade Reuso do Conhecimento Metamineração de dados |
topic |
Mineração de Dados Descoberta do Conhecimento em Base de Dados Processos de KDD Framework Interoperabilidade Reuso do Conhecimento Metamineração de dados |
description |
Data Mining surgiu da necessidade de extração do conhecimento a partir de volumosas massas de dados geradas pelas empresas/instituições. Com o crescimento da área e o aumento do poder de processamento dos computadores, as organizações que prestam serviços em KDD (Knowledge Discovery in Database) têm guardado, cada vez mais, um grande número de documentos e processos referentes a projetos executados no passado. Por outro lado, hoje, o desenvolvimento de projetos de Data Mining exige do especialista o uso de diversas ferramentas, linguagens de programação e metodologias associadas à sua experiência para resolução do problema. Um dos maiores problemas práticos de KDD é como prover a interoperabilidade entre diferentes plataformas existentes, de tal forma que os processos fiquem centralizados e documentados em um único ambiente. Outro grande problema, hoje, é a falta de reuso de conhecimento devido à complexidade e forte dependência do usuário. Neste contexto, as experiências adquiridas em projetos anteriores não são devidamente documentadas, gerenciadas e controladas, gerando como conseqüência a repetição de erros dos projetos anteriores. Em outras palavras, outro grande problema prático é a falta de plataformas capazes de fazer o reuso do conhecimento adquirido em projetos realizados no passado. O principal objetivo deste trabalho é criar um framework híbrido para desenvolvimento de soluções em Mineração de Dados que integra diversas ferramentas disponíveis no mercado e disponibiliza um ambiente integrado para reuso do conhecimento na área de KDD. Este ambiente possibilita a centralização e padronização dos artefatos gerados ao longo do processo de KDD, assim como aproveita os melhores recursos de cada ferramenta de mercado disponível. Para validação do framework foram coletados os metadados de 69 projetos reais de mineração de dados, 61 lições aprendidas dos profissionais que trabalharam nestes projetos e 654 entidades de conhecimento (congressos, softwares, publicações etc) da área de KDD. Os estudos apresentados, principalmente para definição do início do projeto, mostraram ser possível, através do framework, entender as características que levaram os projetos a serem um sucesso ou fracasso. Assim, o framework é um ambiente que assegura o desenvolvimento de projetos em KDD de alta qualidade que atende às expectativas do cliente dentro do tempo e orçamento previstos |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:50:08Z |
dc.date.available.fl_str_mv |
2014-06-12T15:50:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Carneiro Leão Vieira da Cunha, Rodrigo; Jorge Leitão Adeodato, Paulo. Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados. 2009. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/1435 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000kr6w |
identifier_str_mv |
Carneiro Leão Vieira da Cunha, Rodrigo; Jorge Leitão Adeodato, Paulo. Framework Híbrido para Integração de Ferramentas e Reuso do Conhecimento em Problemas Binários de Mineração de Dados. 2009. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009. ark:/64986/001300000kr6w |
url |
https://repositorio.ufpe.br/handle/123456789/1435 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/1435/4/arquivo1928_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/1435/1/arquivo1928_1.pdf https://repositorio.ufpe.br/bitstream/123456789/1435/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/1435/3/arquivo1928_1.pdf.txt |
bitstream.checksum.fl_str_mv |
1bcbfbc821a3f41db1feedd0f5d4f716 ed1bedfc483f596f442e5ff7208e1ed0 8a4605be74aa9ea9d79846c1fba20a33 33bead361c24c226e4a35bbc7456f00b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172850190909440 |