Extracting structured information from text to augment knowledge bases

Detalhes bibliográficos
Autor(a) principal: SILVA, Johny Moreira da
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000dg5t
Texto Completo: https://repositorio.ufpe.br/handle/123456789/34145
Resumo: Knowledge graphs (or knowledge bases) allow data organization and exploration, making easier the semantic understanding and use of data by machines. Traditional strategies for knowledge base construction have mostly relied on manual effort, or have been automatically extracted from structured and semi-structured data. Considering the large amount of unstructured information on theWeb, new approaches on knowledge bases construction and maintenance are trying to leverage this information to improve the quality and coverage of knowledge graphs. In this work, focusing in the completeness problem of existing knowledge bases, we are interested in extracting from unstructured text missing attributes of entities in knowledge bases. For this study, in particular, we use the infoboxes of entities in Wikipedia articles as instances of the knowledge graph and their respective text as source of unstructured data. More specifically, given Wikipedia articles of entities in a particular domain, the structured information of the entity’s attributes in the infobox is used by a distant supervision strategy to identify sentences that mention those attributes in the text. These sentences are provided as labels to train a sequence-based neural network (Bidirectional Long Short-Term Memory or Convolutional Neural Network), which then performs the extraction of the attributes on unseen articles. We have compared our strategy with two traditional approaches for this problem, Kylin and iPopulator. Our distant supervision model have presented a considerable amount of positive and negative training examples, obtaining representative training examples when compared with the other two traditional systems. Also, our pipeline extraction have shown better performance filling the proposed schema. Overall, the extraction pipeline proposed in this work outperforms the baseline models with an average increase of 0.29 points in F-Score, showing significant difference in performance. In this work we have proposed a modification of the Distant Supervision paradigm for automatic labeling of training examples and an extraction pipeline for filling out a given schema with better performance than the analyzed baseline systems.
id UFPE_5151abc041f938188f1f13cafe61cb80
oai_identifier_str oai:repositorio.ufpe.br:123456789/34145
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SILVA, Johny Moreira dahttp://lattes.cnpq.br/0022427692093493http://lattes.cnpq.br/7113249247656195BARBOSA, Luciano de Andrade2019-10-03T18:22:52Z2019-10-03T18:22:52Z2019-02-25https://repositorio.ufpe.br/handle/123456789/34145ark:/64986/001300000dg5tKnowledge graphs (or knowledge bases) allow data organization and exploration, making easier the semantic understanding and use of data by machines. Traditional strategies for knowledge base construction have mostly relied on manual effort, or have been automatically extracted from structured and semi-structured data. Considering the large amount of unstructured information on theWeb, new approaches on knowledge bases construction and maintenance are trying to leverage this information to improve the quality and coverage of knowledge graphs. In this work, focusing in the completeness problem of existing knowledge bases, we are interested in extracting from unstructured text missing attributes of entities in knowledge bases. For this study, in particular, we use the infoboxes of entities in Wikipedia articles as instances of the knowledge graph and their respective text as source of unstructured data. More specifically, given Wikipedia articles of entities in a particular domain, the structured information of the entity’s attributes in the infobox is used by a distant supervision strategy to identify sentences that mention those attributes in the text. These sentences are provided as labels to train a sequence-based neural network (Bidirectional Long Short-Term Memory or Convolutional Neural Network), which then performs the extraction of the attributes on unseen articles. We have compared our strategy with two traditional approaches for this problem, Kylin and iPopulator. Our distant supervision model have presented a considerable amount of positive and negative training examples, obtaining representative training examples when compared with the other two traditional systems. Also, our pipeline extraction have shown better performance filling the proposed schema. Overall, the extraction pipeline proposed in this work outperforms the baseline models with an average increase of 0.29 points in F-Score, showing significant difference in performance. In this work we have proposed a modification of the Distant Supervision paradigm for automatic labeling of training examples and an extraction pipeline for filling out a given schema with better performance than the analyzed baseline systems.FACEPEGrafos de Conhecimento (ou Bases de Conhecimento) permitem a organização e exploração de dados, tornando mais fácil o seu entendimento semântico e utilização por máquinas. Estratégias tradicionais para construção de bases de conhecimento tem dependido na maior parte das vezes de esforço manual, ou tem utilizado extração automática de fontes de dados estruturadas e semi-estruturadas. Considerando a grande quantidade de informação não estruturada na Web, novas abordagens para construção e manutenção de bases de conhecimento tem tentado alavancar o uso dessa fonte como forma de melhorar a qualidade e a cobertura dos grafos de conhecimento. Este trabalho está voltado para o problema de completude de bases de conhecimento, nós estamos interessados em extrair de textos não estruturados os atributos faltosos de entidades. Para este estudo em particular, nós fazemos uso de Infoboxes de entidades de artigos da Wikipédia como instâncias do grafo de conhecimento, e os textos desses artigos são utilizados como fonte de dados não estruturados. Mais especificamente, dados artigos de entidades da Wikipédia de um determinado domínio, a informação estruturada dos atributos de Infobox da entidade são usados por uma estratégia de supervisão distante, de forma a identificar sentenças que mencionam esses atributos. Essas sentenças são rotuladas e utilizadas para treino de uma rede neural baseada em sequência (Rede Bidirecional de Memória de Curto- Longo Prazo ou Rede Neural Convolucional), que realizam a extração de atributos em novos artigos. Nós comparamos nossa estratégia com duas abordagens tradicionais para o mesmo problema, Kylin e iPopulator. Nosso modelo de supervisão distante apresentou uma quantidade considerável de exemplos de treinamento positivos e negativos quando comparado com os outros dois sistemas tradicionais. Nosso esquema de extração também apresentou melhor performance no preenchimento do esquema de dados proposto. No geral, nosso sistema de extração superou os modelos de base com um aumento médio de 0.29 pontos no F-Score, mostrando diferença significativa de performance. Neste trabalho foi proposto uma modificação do paradigma de supervisão distante para rotulagem automática de exemplos de treinamento, e um esquema de extração para preenchimento de um dado esquema de dados com performance superior aos sistemas de base analisados.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBanco de dadosProcessamento de linguagem naturalExtracting structured information from text to augment knowledge basesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Johny Moreira da Silva.pdf.jpgDISSERTAÇÃO Johny Moreira da Silva.pdf.jpgGenerated Thumbnailimage/jpeg1260https://repositorio.ufpe.br/bitstream/123456789/34145/5/DISSERTA%c3%87%c3%83O%20Johny%20Moreira%20da%20Silva.pdf.jpgf2ff31a5f7ee5e0bcb6419a1c4050d28MD55ORIGINALDISSERTAÇÃO Johny Moreira da Silva.pdfDISSERTAÇÃO Johny Moreira da Silva.pdfapplication/pdf4114482https://repositorio.ufpe.br/bitstream/123456789/34145/1/DISSERTA%c3%87%c3%83O%20Johny%20Moreira%20da%20Silva.pdf54d9d4064308022bf06cdb027299287fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/34145/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/34145/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTDISSERTAÇÃO Johny Moreira da Silva.pdf.txtDISSERTAÇÃO Johny Moreira da Silva.pdf.txtExtracted texttext/plain210075https://repositorio.ufpe.br/bitstream/123456789/34145/4/DISSERTA%c3%87%c3%83O%20Johny%20Moreira%20da%20Silva.pdf.txtf49e33f847e1809d24eed1d66ed0e138MD54123456789/341452019-10-25 08:12:26.975oai:repositorio.ufpe.br:123456789/34145TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T11:12:26Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Extracting structured information from text to augment knowledge bases
title Extracting structured information from text to augment knowledge bases
spellingShingle Extracting structured information from text to augment knowledge bases
SILVA, Johny Moreira da
Banco de dados
Processamento de linguagem natural
title_short Extracting structured information from text to augment knowledge bases
title_full Extracting structured information from text to augment knowledge bases
title_fullStr Extracting structured information from text to augment knowledge bases
title_full_unstemmed Extracting structured information from text to augment knowledge bases
title_sort Extracting structured information from text to augment knowledge bases
author SILVA, Johny Moreira da
author_facet SILVA, Johny Moreira da
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0022427692093493
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7113249247656195
dc.contributor.author.fl_str_mv SILVA, Johny Moreira da
dc.contributor.advisor1.fl_str_mv BARBOSA, Luciano de Andrade
contributor_str_mv BARBOSA, Luciano de Andrade
dc.subject.por.fl_str_mv Banco de dados
Processamento de linguagem natural
topic Banco de dados
Processamento de linguagem natural
description Knowledge graphs (or knowledge bases) allow data organization and exploration, making easier the semantic understanding and use of data by machines. Traditional strategies for knowledge base construction have mostly relied on manual effort, or have been automatically extracted from structured and semi-structured data. Considering the large amount of unstructured information on theWeb, new approaches on knowledge bases construction and maintenance are trying to leverage this information to improve the quality and coverage of knowledge graphs. In this work, focusing in the completeness problem of existing knowledge bases, we are interested in extracting from unstructured text missing attributes of entities in knowledge bases. For this study, in particular, we use the infoboxes of entities in Wikipedia articles as instances of the knowledge graph and their respective text as source of unstructured data. More specifically, given Wikipedia articles of entities in a particular domain, the structured information of the entity’s attributes in the infobox is used by a distant supervision strategy to identify sentences that mention those attributes in the text. These sentences are provided as labels to train a sequence-based neural network (Bidirectional Long Short-Term Memory or Convolutional Neural Network), which then performs the extraction of the attributes on unseen articles. We have compared our strategy with two traditional approaches for this problem, Kylin and iPopulator. Our distant supervision model have presented a considerable amount of positive and negative training examples, obtaining representative training examples when compared with the other two traditional systems. Also, our pipeline extraction have shown better performance filling the proposed schema. Overall, the extraction pipeline proposed in this work outperforms the baseline models with an average increase of 0.29 points in F-Score, showing significant difference in performance. In this work we have proposed a modification of the Distant Supervision paradigm for automatic labeling of training examples and an extraction pipeline for filling out a given schema with better performance than the analyzed baseline systems.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-10-03T18:22:52Z
dc.date.available.fl_str_mv 2019-10-03T18:22:52Z
dc.date.issued.fl_str_mv 2019-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/34145
dc.identifier.dark.fl_str_mv ark:/64986/001300000dg5t
url https://repositorio.ufpe.br/handle/123456789/34145
identifier_str_mv ark:/64986/001300000dg5t
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/34145/5/DISSERTA%c3%87%c3%83O%20Johny%20Moreira%20da%20Silva.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/34145/1/DISSERTA%c3%87%c3%83O%20Johny%20Moreira%20da%20Silva.pdf
https://repositorio.ufpe.br/bitstream/123456789/34145/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/34145/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/34145/4/DISSERTA%c3%87%c3%83O%20Johny%20Moreira%20da%20Silva.pdf.txt
bitstream.checksum.fl_str_mv f2ff31a5f7ee5e0bcb6419a1c4050d28
54d9d4064308022bf06cdb027299287f
e39d27027a6cc9cb039ad269a5db8e34
bd573a5ca8288eb7272482765f819534
f49e33f847e1809d24eed1d66ed0e138
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172798863114240