Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda

Detalhes bibliográficos
Autor(a) principal: COSTA, Daniela de Sousa
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000010k8b
Texto Completo: https://repositorio.ufpe.br/handle/123456789/38120
Resumo: Uma cena quando capturada por dispositivos pode apresentar diferenças significativas entre aquilo que é observado diretamente pelo olho humano e sua representação na forma de imagem. Isto se deve à capacidade que os seres humanos têm de perceber certos aspectos da imagem, como cor e detalhes em regiões escuras independentemente da iluminação. A implementação de tais habilidades em sistemas computacionais se mostra benéfica em várias aplicações gráficas e de visão computacional, tais como as que envolvem classificação, segmentação semântica e renderização de cenas. Neste trabalho, são abordados dois tipos de aprimoramento de imagem. O primeiro visa corrigir as cores dos objetos de uma cena, de maneira que as mesmas possam ser identificadas corretamente independentemente da cor do iluminante utilizado para captura, propriedade conhecida como constância de cor. Já o segundo tipo de aprimoramento é voltado para casos onde a captura da imagem é feita sob condições de baixa luminosidade. Para ambos os problemas, percebeu-se que o ponto central é a influência da iluminação que pode gerar efeitos não desejáveis sobre a cena. A partir dessa observação, são apresentados dois métodos baseados em redes neurais convolucionais que, ao receberem uma imagem, estimam o iluminante sendo este utilizado para correção da mesma. Experimentos revelam que as estratégias propostas são capazes de proporcionar resultados compatíveis e, em certos casos, superiores aos algoritmos do estado da arte.
id UFPE_5197951b429d145a0bc1392486801d6d
oai_identifier_str oai:repositorio.ufpe.br:123456789/38120
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling COSTA, Daniela de Sousahttp://lattes.cnpq.br/8243824739514947http://lattes.cnpq.br/2248591013863307MELLO, Carlos Alexandre Barros de2020-09-28T18:28:02Z2020-09-28T18:28:02Z2020-02-27COSTA, Daniela de Sousa. Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38120ark:/64986/0013000010k8bUma cena quando capturada por dispositivos pode apresentar diferenças significativas entre aquilo que é observado diretamente pelo olho humano e sua representação na forma de imagem. Isto se deve à capacidade que os seres humanos têm de perceber certos aspectos da imagem, como cor e detalhes em regiões escuras independentemente da iluminação. A implementação de tais habilidades em sistemas computacionais se mostra benéfica em várias aplicações gráficas e de visão computacional, tais como as que envolvem classificação, segmentação semântica e renderização de cenas. Neste trabalho, são abordados dois tipos de aprimoramento de imagem. O primeiro visa corrigir as cores dos objetos de uma cena, de maneira que as mesmas possam ser identificadas corretamente independentemente da cor do iluminante utilizado para captura, propriedade conhecida como constância de cor. Já o segundo tipo de aprimoramento é voltado para casos onde a captura da imagem é feita sob condições de baixa luminosidade. Para ambos os problemas, percebeu-se que o ponto central é a influência da iluminação que pode gerar efeitos não desejáveis sobre a cena. A partir dessa observação, são apresentados dois métodos baseados em redes neurais convolucionais que, ao receberem uma imagem, estimam o iluminante sendo este utilizado para correção da mesma. Experimentos revelam que as estratégias propostas são capazes de proporcionar resultados compatíveis e, em certos casos, superiores aos algoritmos do estado da arte.CNPqA scene captured by devices can present significant differences between objects that are directly visible to the human eye and their representation as an image. This ability allows humans to perceive certain aspects of the image, such as color and details in dark regions, somewhat independently of lighting. The implementation of such skills in computer systems shows benefits in various graphics and computer vision applications, such as classification tasks, semantic segmentation, and scene rendering. In this work, two types of image enhancement are introduced. The first method for image enhancement aims to correct the colors of the objects in a scene so that they can be correctly identified regardless of the color of the light source used to capture the image, a property known as color constancy. The second enhancement method focuses on cases where the image is captured under low-light conditions. For both problems, the central point is the influence of lighting that can generate undesirable effects on the scene. For this reason, two methods are presented based on convolutional neural networks that receive an image and estimate the illuminant that is used to correct the scene. Experimental results reveal that the proposed methods achieve compatible results and, in some cases, demonstrate superior performance to the state-of-the-art methods.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessInteligência computacionalAprimoramento de imagensAprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profundainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Daniela de Sousa Costa.pdfDISSERTAÇÃO Daniela de Sousa Costa.pdfapplication/pdf1758131https://repositorio.ufpe.br/bitstream/123456789/38120/1/DISSERTA%c3%87%c3%83O%20Daniela%20de%20Sousa%20Costa.pdf34c140452028939a067da128e3cfe365MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/38120/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/38120/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTDISSERTAÇÃO Daniela de Sousa Costa.pdf.txtDISSERTAÇÃO Daniela de Sousa Costa.pdf.txtExtracted texttext/plain137222https://repositorio.ufpe.br/bitstream/123456789/38120/4/DISSERTA%c3%87%c3%83O%20Daniela%20de%20Sousa%20Costa.pdf.txtb30b9413f764ef3ebc51305907b0d417MD54THUMBNAILDISSERTAÇÃO Daniela de Sousa Costa.pdf.jpgDISSERTAÇÃO Daniela de Sousa Costa.pdf.jpgGenerated Thumbnailimage/jpeg1249https://repositorio.ufpe.br/bitstream/123456789/38120/5/DISSERTA%c3%87%c3%83O%20Daniela%20de%20Sousa%20Costa.pdf.jpgc5f6340e0d51f756818c4d2fe46284feMD55123456789/381202020-09-29 02:14:48.686oai:repositorio.ufpe.br:123456789/38120TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-09-29T05:14:48Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda
title Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda
spellingShingle Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda
COSTA, Daniela de Sousa
Inteligência computacional
Aprimoramento de imagens
title_short Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda
title_full Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda
title_fullStr Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda
title_full_unstemmed Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda
title_sort Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda
author COSTA, Daniela de Sousa
author_facet COSTA, Daniela de Sousa
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8243824739514947
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2248591013863307
dc.contributor.author.fl_str_mv COSTA, Daniela de Sousa
dc.contributor.advisor1.fl_str_mv MELLO, Carlos Alexandre Barros de
contributor_str_mv MELLO, Carlos Alexandre Barros de
dc.subject.por.fl_str_mv Inteligência computacional
Aprimoramento de imagens
topic Inteligência computacional
Aprimoramento de imagens
description Uma cena quando capturada por dispositivos pode apresentar diferenças significativas entre aquilo que é observado diretamente pelo olho humano e sua representação na forma de imagem. Isto se deve à capacidade que os seres humanos têm de perceber certos aspectos da imagem, como cor e detalhes em regiões escuras independentemente da iluminação. A implementação de tais habilidades em sistemas computacionais se mostra benéfica em várias aplicações gráficas e de visão computacional, tais como as que envolvem classificação, segmentação semântica e renderização de cenas. Neste trabalho, são abordados dois tipos de aprimoramento de imagem. O primeiro visa corrigir as cores dos objetos de uma cena, de maneira que as mesmas possam ser identificadas corretamente independentemente da cor do iluminante utilizado para captura, propriedade conhecida como constância de cor. Já o segundo tipo de aprimoramento é voltado para casos onde a captura da imagem é feita sob condições de baixa luminosidade. Para ambos os problemas, percebeu-se que o ponto central é a influência da iluminação que pode gerar efeitos não desejáveis sobre a cena. A partir dessa observação, são apresentados dois métodos baseados em redes neurais convolucionais que, ao receberem uma imagem, estimam o iluminante sendo este utilizado para correção da mesma. Experimentos revelam que as estratégias propostas são capazes de proporcionar resultados compatíveis e, em certos casos, superiores aos algoritmos do estado da arte.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-09-28T18:28:02Z
dc.date.available.fl_str_mv 2020-09-28T18:28:02Z
dc.date.issued.fl_str_mv 2020-02-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COSTA, Daniela de Sousa. Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/38120
dc.identifier.dark.fl_str_mv ark:/64986/0013000010k8b
identifier_str_mv COSTA, Daniela de Sousa. Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de aprendizagem profunda. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.
ark:/64986/0013000010k8b
url https://repositorio.ufpe.br/handle/123456789/38120
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/38120/1/DISSERTA%c3%87%c3%83O%20Daniela%20de%20Sousa%20Costa.pdf
https://repositorio.ufpe.br/bitstream/123456789/38120/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/38120/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/38120/4/DISSERTA%c3%87%c3%83O%20Daniela%20de%20Sousa%20Costa.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/38120/5/DISSERTA%c3%87%c3%83O%20Daniela%20de%20Sousa%20Costa.pdf.jpg
bitstream.checksum.fl_str_mv 34c140452028939a067da128e3cfe365
e39d27027a6cc9cb039ad269a5db8e34
bd573a5ca8288eb7272482765f819534
b30b9413f764ef3ebc51305907b0d417
c5f6340e0d51f756818c4d2fe46284fe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172963742253056