An orchestration approach for unwanted internet traffic identification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000wr30 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2387 |
Resumo: | Um breve exame do atual tráfego Internet mostra uma mistura de serviços conhecidos e desconhecidos, novas e antigas aplicações, tráfego legítimo e ilegítimo, dados solicitados e não solicitados, tráfego altamente relevante ou simplesmente indesejado. Entre esses, o tráfego Internet não desejado tem se tornado cada vez mais prejudicial para o desempenho e a disponibilidade de serviços, tornando escasso os recursos das redes. Tipicamente, este tipo de tráfego é representado por spam, phishing, ataques de negação de serviço (DoS e DDoS), vírus e worms, má configuração de recursos e serviços, entre outras fontes. Apesar dos diferentes esforços, isolados e/ou coordenados, o tráfego Internet não desejado continua a crescer. Primeiramente, porque representa uma vasta gama de aplicações de usuários, dados e informações com diferentes objetivos. Segundo, devido a ineficácia das atuais soluções em identificar e reduzir este tipo de tráfego. Por último, uma definição clara do que é não desejado tráfego precisa ser feita. A fim de solucionar estes problemas e motivado pelo nível atingido pelo tráfego não desejado, esta tese apresenta: 1. Um estudo sobre o universo do tráfego Internet não desejado, apresentado definições, discussões sobre contexto e classificação e uma série de existentes e potencias soluções. 2. Uma metodologia para identificar tráfego não desejado baseada em orquestração. OADS (Orchestration Anomaly Detection System) é uma plataforma única para a identificação de tráfego não desejado que permite um gerenciamento cooperativa e integrado de métodos, ferramentas e soluções voltadas a identificação de tráfego não desejado. 3. O projeto e implementação de soluções modulares integráveis a metodologia proposta. A primeira delas é um sistema de suporte a recuperação de informações na Web (WIRSS), chamado OADS Miner ou simplesmente ARAPONGA, cuja função é reunir informações de segurança sobre vulnerabilidades, ataques, intrusões e anomalias de tráfego disponíveis na Web, indexá-las eficientemente e fornecer uma máquina de busca focada neste tipo de informação. A segunda, chamada Alert Pre- Processor, é um esquema que utilize uma técnica de cluster para receber múltiplas fontes de alertas, agregá-los e extrair aqueles mais relevantes, permitindo correlações e possivelmente a percepção das estratégias usadas em ataques. A terceira e última é um mecanismo de correlação e fusão de alertas, FER Analyzer, que utilize a técnica de descoberta de episódios frequentes (FED) para encontrar sequências de alertas usadas para confirmar ataques e possivelmente predizer futuros eventos. De modo a avaliar a proposta e suas implementações, uma série de experimentos foram conduzidos com o objetivo de comprovar a eficácia e precisão das soluções |
id |
UFPE_545fec22280cd4eabd6376333b6e2dca |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2387 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
FEITOSA, Eduardo LuzeiroSADOK, Djamel Fawzi Hadj2014-06-12T15:57:37Z2014-06-12T15:57:37Z2010-01-31Luzeiro Feitosa, Eduardo; Fawzi Hadj Sadok, Djamel. An orchestration approach for unwanted internet traffic identification. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.https://repositorio.ufpe.br/handle/123456789/2387ark:/64986/001300000wr30Um breve exame do atual tráfego Internet mostra uma mistura de serviços conhecidos e desconhecidos, novas e antigas aplicações, tráfego legítimo e ilegítimo, dados solicitados e não solicitados, tráfego altamente relevante ou simplesmente indesejado. Entre esses, o tráfego Internet não desejado tem se tornado cada vez mais prejudicial para o desempenho e a disponibilidade de serviços, tornando escasso os recursos das redes. Tipicamente, este tipo de tráfego é representado por spam, phishing, ataques de negação de serviço (DoS e DDoS), vírus e worms, má configuração de recursos e serviços, entre outras fontes. Apesar dos diferentes esforços, isolados e/ou coordenados, o tráfego Internet não desejado continua a crescer. Primeiramente, porque representa uma vasta gama de aplicações de usuários, dados e informações com diferentes objetivos. Segundo, devido a ineficácia das atuais soluções em identificar e reduzir este tipo de tráfego. Por último, uma definição clara do que é não desejado tráfego precisa ser feita. A fim de solucionar estes problemas e motivado pelo nível atingido pelo tráfego não desejado, esta tese apresenta: 1. Um estudo sobre o universo do tráfego Internet não desejado, apresentado definições, discussões sobre contexto e classificação e uma série de existentes e potencias soluções. 2. Uma metodologia para identificar tráfego não desejado baseada em orquestração. OADS (Orchestration Anomaly Detection System) é uma plataforma única para a identificação de tráfego não desejado que permite um gerenciamento cooperativa e integrado de métodos, ferramentas e soluções voltadas a identificação de tráfego não desejado. 3. O projeto e implementação de soluções modulares integráveis a metodologia proposta. A primeira delas é um sistema de suporte a recuperação de informações na Web (WIRSS), chamado OADS Miner ou simplesmente ARAPONGA, cuja função é reunir informações de segurança sobre vulnerabilidades, ataques, intrusões e anomalias de tráfego disponíveis na Web, indexá-las eficientemente e fornecer uma máquina de busca focada neste tipo de informação. A segunda, chamada Alert Pre- Processor, é um esquema que utilize uma técnica de cluster para receber múltiplas fontes de alertas, agregá-los e extrair aqueles mais relevantes, permitindo correlações e possivelmente a percepção das estratégias usadas em ataques. A terceira e última é um mecanismo de correlação e fusão de alertas, FER Analyzer, que utilize a técnica de descoberta de episódios frequentes (FED) para encontrar sequências de alertas usadas para confirmar ataques e possivelmente predizer futuros eventos. De modo a avaliar a proposta e suas implementações, uma série de experimentos foram conduzidos com o objetivo de comprovar a eficácia e precisão das soluçõesUniversidade Federal do AmazonasengUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessUnwanted Internet TrafficOrchestrationAlert CorrelationFrequent Episodes DiscoveryWIRSSAn orchestration approach for unwanted internet traffic identificationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo3214_1.pdf.jpgarquivo3214_1.pdf.jpgGenerated Thumbnailimage/jpeg1276https://repositorio.ufpe.br/bitstream/123456789/2387/4/arquivo3214_1.pdf.jpg2f447e84b4e14befb16a6f447525ac4dMD54ORIGINALarquivo3214_1.pdfapplication/pdf3789743https://repositorio.ufpe.br/bitstream/123456789/2387/1/arquivo3214_1.pdf5121a8308f93d20405e932f1e9bab193MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2387/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo3214_1.pdf.txtarquivo3214_1.pdf.txtExtracted texttext/plain488575https://repositorio.ufpe.br/bitstream/123456789/2387/3/arquivo3214_1.pdf.txte394122263d990548d3e17aa895e57dcMD53123456789/23872019-10-25 13:02:36.003oai:repositorio.ufpe.br:123456789/2387Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T16:02:36Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
An orchestration approach for unwanted internet traffic identification |
title |
An orchestration approach for unwanted internet traffic identification |
spellingShingle |
An orchestration approach for unwanted internet traffic identification FEITOSA, Eduardo Luzeiro Unwanted Internet Traffic Orchestration Alert Correlation Frequent Episodes Discovery WIRSS |
title_short |
An orchestration approach for unwanted internet traffic identification |
title_full |
An orchestration approach for unwanted internet traffic identification |
title_fullStr |
An orchestration approach for unwanted internet traffic identification |
title_full_unstemmed |
An orchestration approach for unwanted internet traffic identification |
title_sort |
An orchestration approach for unwanted internet traffic identification |
author |
FEITOSA, Eduardo Luzeiro |
author_facet |
FEITOSA, Eduardo Luzeiro |
author_role |
author |
dc.contributor.author.fl_str_mv |
FEITOSA, Eduardo Luzeiro |
dc.contributor.advisor1.fl_str_mv |
SADOK, Djamel Fawzi Hadj |
contributor_str_mv |
SADOK, Djamel Fawzi Hadj |
dc.subject.por.fl_str_mv |
Unwanted Internet Traffic Orchestration Alert Correlation Frequent Episodes Discovery WIRSS |
topic |
Unwanted Internet Traffic Orchestration Alert Correlation Frequent Episodes Discovery WIRSS |
description |
Um breve exame do atual tráfego Internet mostra uma mistura de serviços conhecidos e desconhecidos, novas e antigas aplicações, tráfego legítimo e ilegítimo, dados solicitados e não solicitados, tráfego altamente relevante ou simplesmente indesejado. Entre esses, o tráfego Internet não desejado tem se tornado cada vez mais prejudicial para o desempenho e a disponibilidade de serviços, tornando escasso os recursos das redes. Tipicamente, este tipo de tráfego é representado por spam, phishing, ataques de negação de serviço (DoS e DDoS), vírus e worms, má configuração de recursos e serviços, entre outras fontes. Apesar dos diferentes esforços, isolados e/ou coordenados, o tráfego Internet não desejado continua a crescer. Primeiramente, porque representa uma vasta gama de aplicações de usuários, dados e informações com diferentes objetivos. Segundo, devido a ineficácia das atuais soluções em identificar e reduzir este tipo de tráfego. Por último, uma definição clara do que é não desejado tráfego precisa ser feita. A fim de solucionar estes problemas e motivado pelo nível atingido pelo tráfego não desejado, esta tese apresenta: 1. Um estudo sobre o universo do tráfego Internet não desejado, apresentado definições, discussões sobre contexto e classificação e uma série de existentes e potencias soluções. 2. Uma metodologia para identificar tráfego não desejado baseada em orquestração. OADS (Orchestration Anomaly Detection System) é uma plataforma única para a identificação de tráfego não desejado que permite um gerenciamento cooperativa e integrado de métodos, ferramentas e soluções voltadas a identificação de tráfego não desejado. 3. O projeto e implementação de soluções modulares integráveis a metodologia proposta. A primeira delas é um sistema de suporte a recuperação de informações na Web (WIRSS), chamado OADS Miner ou simplesmente ARAPONGA, cuja função é reunir informações de segurança sobre vulnerabilidades, ataques, intrusões e anomalias de tráfego disponíveis na Web, indexá-las eficientemente e fornecer uma máquina de busca focada neste tipo de informação. A segunda, chamada Alert Pre- Processor, é um esquema que utilize uma técnica de cluster para receber múltiplas fontes de alertas, agregá-los e extrair aqueles mais relevantes, permitindo correlações e possivelmente a percepção das estratégias usadas em ataques. A terceira e última é um mecanismo de correlação e fusão de alertas, FER Analyzer, que utilize a técnica de descoberta de episódios frequentes (FED) para encontrar sequências de alertas usadas para confirmar ataques e possivelmente predizer futuros eventos. De modo a avaliar a proposta e suas implementações, uma série de experimentos foram conduzidos com o objetivo de comprovar a eficácia e precisão das soluções |
publishDate |
2010 |
dc.date.issued.fl_str_mv |
2010-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:57:37Z |
dc.date.available.fl_str_mv |
2014-06-12T15:57:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Luzeiro Feitosa, Eduardo; Fawzi Hadj Sadok, Djamel. An orchestration approach for unwanted internet traffic identification. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2387 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000wr30 |
identifier_str_mv |
Luzeiro Feitosa, Eduardo; Fawzi Hadj Sadok, Djamel. An orchestration approach for unwanted internet traffic identification. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010. ark:/64986/001300000wr30 |
url |
https://repositorio.ufpe.br/handle/123456789/2387 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2387/4/arquivo3214_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/2387/1/arquivo3214_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2387/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2387/3/arquivo3214_1.pdf.txt |
bitstream.checksum.fl_str_mv |
2f447e84b4e14befb16a6f447525ac4d 5121a8308f93d20405e932f1e9bab193 8a4605be74aa9ea9d79846c1fba20a33 e394122263d990548d3e17aa895e57dc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172937019293696 |