Reconstrução de imagens de tomografia por impedância elétrica usando máquinas de aprendizado extremo e algoritmos de retroprojeção
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000011t3w |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/34165 |
Resumo: | A Tomografia por Impedância Elétrica (TIE) é uma técnica de imageamento baseada na aplicação de uma corrente elétrica alternada em eletrodos posicionados na superfície do domínio, também responsáveis pela medição do potencial elétrico resultante. As principais vantagens da TIE são a portabilidade, o baixo custo associado e a não utilização da radiação ionizante. A reconstrução de suas imagens depende da resolução dos problemas direto e inverso, sendo o último um problema não linear e mal-posto. Por isso, diversos métodos de reconstrução têm sido desenvolvidos. Neste trabalho é proposta uma nova abordagem: o uso de Redes Artificiais Neurais de pesos aleatórios, especialmente Máquinas de aprendizado extremo (ELM), para aproximar sinogramas a partir de dados de potenciais elétricos e, assim, utilizar o algoritmo clássico de Retroprojeção para reconstrução da imagem. O banco de imagens sintéticas de TIE e suas reconstruções foram implementados em ambiente de GNU/Octave e as ELMs foram treinadas com 4000 imagens. De forma qualitativa, as imagens reconstruídas com as ELMs foram comparadas com as imagens originais e com as reconstruções a partir da direta aplicação do algoritmo de Retroprojeção, apresentando alta similaridade neste último caso. Os resultados também foram analisados quantitativamente com o Índice de Similaridade Estrutural e com a Relação Sinal-Ruído de pico, comprovando a consistência dos resultados. |
id |
UFPE_548d91ae3503a75a720b36e3756abf1c |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/34165 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
GOMES, Juliana Carneirohttp://lattes.cnpq.br/4951733169700261http://lattes.cnpq.br/3702924271252130SOUZA, Ricardo Emmanuel deSANTOS, Wellington Pinheiro dos2019-10-03T19:54:28Z2019-10-03T19:54:28Z2019-02-22https://repositorio.ufpe.br/handle/123456789/34165ark:/64986/0013000011t3wA Tomografia por Impedância Elétrica (TIE) é uma técnica de imageamento baseada na aplicação de uma corrente elétrica alternada em eletrodos posicionados na superfície do domínio, também responsáveis pela medição do potencial elétrico resultante. As principais vantagens da TIE são a portabilidade, o baixo custo associado e a não utilização da radiação ionizante. A reconstrução de suas imagens depende da resolução dos problemas direto e inverso, sendo o último um problema não linear e mal-posto. Por isso, diversos métodos de reconstrução têm sido desenvolvidos. Neste trabalho é proposta uma nova abordagem: o uso de Redes Artificiais Neurais de pesos aleatórios, especialmente Máquinas de aprendizado extremo (ELM), para aproximar sinogramas a partir de dados de potenciais elétricos e, assim, utilizar o algoritmo clássico de Retroprojeção para reconstrução da imagem. O banco de imagens sintéticas de TIE e suas reconstruções foram implementados em ambiente de GNU/Octave e as ELMs foram treinadas com 4000 imagens. De forma qualitativa, as imagens reconstruídas com as ELMs foram comparadas com as imagens originais e com as reconstruções a partir da direta aplicação do algoritmo de Retroprojeção, apresentando alta similaridade neste último caso. Os resultados também foram analisados quantitativamente com o Índice de Similaridade Estrutural e com a Relação Sinal-Ruído de pico, comprovando a consistência dos resultados.CAPESElectrical Impedance Tomography (EIT) is an image technique based on the application of an alternating electrical current on electrodes placed on the surface of the domain, which are also responsible for measuring the resulting electrical potentials. EIT main advantages are portability, low cost and non-use of ionizing radiation. EIT image reconstruction depends on the resolution of the direct and inverse problems, which is non-linear and ill-posed. Thereby, several reconstruction methods have been developed. In this work we propose a new approach: the use of random-weigthed neural networks, specially Extreme Learning Machines (ELM), to approximate sinograms from electrical potential data and, therefore, use the classical Backprojection algorithm for image reconstruction. The synthetic images data and all reconstructions were implemented in GNU/Octave environment, and ELMs were trained with 4000 images. Qualitatively, reconstructed images with ELMs were compared with original images and with reconstructions from direct application of Backprojection algorithm, showing high similarity in the last case. Results were also analyzed quantitatively with Structural Similarity Index Results and Peak Signal-to-noise ratio, proving the consistency of the results.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia BiomedicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia BiomédicaTomografia por impedância elétricaReconstrução de imagensInteligência artificialMáquina de aprendizado extremoAlgoritmo de retroprojeçãoReconstrução de imagens de tomografia por impedância elétrica usando máquinas de aprendizado extremo e algoritmos de retroprojeçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Juliana Carneiro Gomes.pdf.jpgDISSERTAÇÃO Juliana Carneiro Gomes.pdf.jpgGenerated Thumbnailimage/jpeg1276https://repositorio.ufpe.br/bitstream/123456789/34165/5/DISSERTA%c3%87%c3%83O%20Juliana%20Carneiro%20Gomes.pdf.jpg13a0e228123412302ad7a02b3007cf90MD55ORIGINALDISSERTAÇÃO Juliana Carneiro Gomes.pdfDISSERTAÇÃO Juliana Carneiro Gomes.pdfapplication/pdf7339253https://repositorio.ufpe.br/bitstream/123456789/34165/1/DISSERTA%c3%87%c3%83O%20Juliana%20Carneiro%20Gomes.pdf7340a6f371f553cbbee54be6ce3e96d9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/34165/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/34165/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTDISSERTAÇÃO Juliana Carneiro Gomes.pdf.txtDISSERTAÇÃO Juliana Carneiro Gomes.pdf.txtExtracted texttext/plain220575https://repositorio.ufpe.br/bitstream/123456789/34165/4/DISSERTA%c3%87%c3%83O%20Juliana%20Carneiro%20Gomes.pdf.txt22e85a26ed422e3c8231c2213baabf4bMD54123456789/341652019-10-25 08:38:21.198oai:repositorio.ufpe.br:123456789/34165TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T11:38:21Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Reconstrução de imagens de tomografia por impedância elétrica usando máquinas de aprendizado extremo e algoritmos de retroprojeção |
title |
Reconstrução de imagens de tomografia por impedância elétrica usando máquinas de aprendizado extremo e algoritmos de retroprojeção |
spellingShingle |
Reconstrução de imagens de tomografia por impedância elétrica usando máquinas de aprendizado extremo e algoritmos de retroprojeção GOMES, Juliana Carneiro Engenharia Biomédica Tomografia por impedância elétrica Reconstrução de imagens Inteligência artificial Máquina de aprendizado extremo Algoritmo de retroprojeção |
title_short |
Reconstrução de imagens de tomografia por impedância elétrica usando máquinas de aprendizado extremo e algoritmos de retroprojeção |
title_full |
Reconstrução de imagens de tomografia por impedância elétrica usando máquinas de aprendizado extremo e algoritmos de retroprojeção |
title_fullStr |
Reconstrução de imagens de tomografia por impedância elétrica usando máquinas de aprendizado extremo e algoritmos de retroprojeção |
title_full_unstemmed |
Reconstrução de imagens de tomografia por impedância elétrica usando máquinas de aprendizado extremo e algoritmos de retroprojeção |
title_sort |
Reconstrução de imagens de tomografia por impedância elétrica usando máquinas de aprendizado extremo e algoritmos de retroprojeção |
author |
GOMES, Juliana Carneiro |
author_facet |
GOMES, Juliana Carneiro |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/4951733169700261 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3702924271252130 |
dc.contributor.author.fl_str_mv |
GOMES, Juliana Carneiro |
dc.contributor.advisor1.fl_str_mv |
SOUZA, Ricardo Emmanuel de |
dc.contributor.advisor-co1.fl_str_mv |
SANTOS, Wellington Pinheiro dos |
contributor_str_mv |
SOUZA, Ricardo Emmanuel de SANTOS, Wellington Pinheiro dos |
dc.subject.por.fl_str_mv |
Engenharia Biomédica Tomografia por impedância elétrica Reconstrução de imagens Inteligência artificial Máquina de aprendizado extremo Algoritmo de retroprojeção |
topic |
Engenharia Biomédica Tomografia por impedância elétrica Reconstrução de imagens Inteligência artificial Máquina de aprendizado extremo Algoritmo de retroprojeção |
description |
A Tomografia por Impedância Elétrica (TIE) é uma técnica de imageamento baseada na aplicação de uma corrente elétrica alternada em eletrodos posicionados na superfície do domínio, também responsáveis pela medição do potencial elétrico resultante. As principais vantagens da TIE são a portabilidade, o baixo custo associado e a não utilização da radiação ionizante. A reconstrução de suas imagens depende da resolução dos problemas direto e inverso, sendo o último um problema não linear e mal-posto. Por isso, diversos métodos de reconstrução têm sido desenvolvidos. Neste trabalho é proposta uma nova abordagem: o uso de Redes Artificiais Neurais de pesos aleatórios, especialmente Máquinas de aprendizado extremo (ELM), para aproximar sinogramas a partir de dados de potenciais elétricos e, assim, utilizar o algoritmo clássico de Retroprojeção para reconstrução da imagem. O banco de imagens sintéticas de TIE e suas reconstruções foram implementados em ambiente de GNU/Octave e as ELMs foram treinadas com 4000 imagens. De forma qualitativa, as imagens reconstruídas com as ELMs foram comparadas com as imagens originais e com as reconstruções a partir da direta aplicação do algoritmo de Retroprojeção, apresentando alta similaridade neste último caso. Os resultados também foram analisados quantitativamente com o Índice de Similaridade Estrutural e com a Relação Sinal-Ruído de pico, comprovando a consistência dos resultados. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-10-03T19:54:28Z |
dc.date.available.fl_str_mv |
2019-10-03T19:54:28Z |
dc.date.issued.fl_str_mv |
2019-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/34165 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000011t3w |
url |
https://repositorio.ufpe.br/handle/123456789/34165 |
identifier_str_mv |
ark:/64986/0013000011t3w |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia Biomedica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/34165/5/DISSERTA%c3%87%c3%83O%20Juliana%20Carneiro%20Gomes.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/34165/1/DISSERTA%c3%87%c3%83O%20Juliana%20Carneiro%20Gomes.pdf https://repositorio.ufpe.br/bitstream/123456789/34165/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/34165/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/34165/4/DISSERTA%c3%87%c3%83O%20Juliana%20Carneiro%20Gomes.pdf.txt |
bitstream.checksum.fl_str_mv |
13a0e228123412302ad7a02b3007cf90 7340a6f371f553cbbee54be6ce3e96d9 e39d27027a6cc9cb039ad269a5db8e34 bd573a5ca8288eb7272482765f819534 22e85a26ed422e3c8231c2213baabf4b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172975584870400 |