Clustering-based dynamic ensemble selection for one-class decomposition

Detalhes bibliográficos
Autor(a) principal: FRAGOSO, Rogério César Peixoto
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000r3qt
Texto Completo: https://repositorio.ufpe.br/handle/123456789/48095
Resumo: A natural solution to tackle multi-class problems is employing multi-class classifiers. How- ever, in specific situations, such as imbalanced data or a high number of classes, it is more effective to decompose the multi-class problem into several and easier to solve problems. One- class decomposition is an alternative, where one-class classifiers (OCCs) are trained for each class separately. However, fitting the data optimally is a challenge for classifiers, especially when it presents a complex intra-class distribution. The literature shows that multiple classifier systems are inherently robust in such cases. Thus, the adoption of multiple OCCs foreach class can lead to an improvement for the one-class decomposition. With that in mind, in this work, we introduce two methods for multi-class classification using ensembles of OCCs. One-class Classifier Dynamic Ensemble Selection for Multi-class problems (MODES, for short) and Density-Based Dynamic Ensemble Selection (DBDES) provide competent classifiers for each region of the feature space by decomposing the original multi-class problem into multiple one-class problems, segmenting the data from each class, and training a OCC for each cluster. The rationale is to reduce the complexity of the classification task by defining a region of the feature space where the classifier is supposed to be an expert. The classification of a test instance is performed by dynamically selecting an ensemble of competent OCCs and the final decision is given by the reconstruction of the original multi-class problem. Experiments carried out with 25 databases, 4 OCC models, and 3 aggregation methods showed that the proposed techniques outperform the literature. When compared with literature techniques, MODES and DBDES obtained better results, especially for databases with complex decision regions.
id UFPE_552a51e9c8a041c6784de3160f153891
oai_identifier_str oai:repositorio.ufpe.br:123456789/48095
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling FRAGOSO, Rogério César Peixotohttp://lattes.cnpq.br/3641521745238692http://lattes.cnpq.br/8577312109146354http://lattes.cnpq.br/9378863653048055http://lattes.cnpq.br/8607171759049558CAVALCANTI, George Darmiton da CunhaPINHEIRO, Roberto Hugo WanderleyOLIVEIRA, Luiz Eduardo Soares de2022-12-06T11:30:39Z2022-12-06T11:30:39Z2022-08-24FRAGOSO, Rogério César Peixoto. Clustering-based dynamic ensemble selection for one-class decomposition. 2022 Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/48095ark:/64986/001300000r3qtA natural solution to tackle multi-class problems is employing multi-class classifiers. How- ever, in specific situations, such as imbalanced data or a high number of classes, it is more effective to decompose the multi-class problem into several and easier to solve problems. One- class decomposition is an alternative, where one-class classifiers (OCCs) are trained for each class separately. However, fitting the data optimally is a challenge for classifiers, especially when it presents a complex intra-class distribution. The literature shows that multiple classifier systems are inherently robust in such cases. Thus, the adoption of multiple OCCs foreach class can lead to an improvement for the one-class decomposition. With that in mind, in this work, we introduce two methods for multi-class classification using ensembles of OCCs. One-class Classifier Dynamic Ensemble Selection for Multi-class problems (MODES, for short) and Density-Based Dynamic Ensemble Selection (DBDES) provide competent classifiers for each region of the feature space by decomposing the original multi-class problem into multiple one-class problems, segmenting the data from each class, and training a OCC for each cluster. The rationale is to reduce the complexity of the classification task by defining a region of the feature space where the classifier is supposed to be an expert. The classification of a test instance is performed by dynamically selecting an ensemble of competent OCCs and the final decision is given by the reconstruction of the original multi-class problem. Experiments carried out with 25 databases, 4 OCC models, and 3 aggregation methods showed that the proposed techniques outperform the literature. When compared with literature techniques, MODES and DBDES obtained better results, especially for databases with complex decision regions.CNPqUma solução natural para lidar com problemas multi-classe é empregar classificadores multi-classe. No entanto, em situações específicas, como dados desbalanceados ou grande número de classes, decompor o problema multiclasse em vários problemas mais fáceis de resolver pode ser mais eficaz. A decomposição em uma classe é uma alternativa, onde classificadores de uma classe (OCCs) são treinados para cada classe separadamente. No entanto, ajustar os dados de forma otimizada é um desafio para os classificadores, principalmente quando os dados apresentam uma distribuição intra-classe complexa. A literatura mostra que sistemas de múltiplos classificadores são inerentemente robustos em tais casos. Assim, a adoção de múltiplos OCCs para cada classe pode levar a uma melhoria de desempenho na decomposição de uma classe. Com isso em mente, neste trabalho apresentamos dois métodos para classificação de problemas multi-classe através ensembles de OCCs. One-class Classifier Dynamic Ensemble Selection for Multi-class problems (MODES) e Density-Based Dynamic Ensemble Selection (DBDES) fornecem classificadores competentes para cada região do espaço de características, decompondo o problema multiclasse original em vários problemas de uma classe, segmentam os dados de cada classe e um OCC é treinado para cada cluster. MODES utiliza o algoritmo K-means e um conjunto de índices de validação de cluster enquanto DBDES utiliza o algoritmo OPTICS para a segmentação dos dados. A lógica é reduzir a complexidade da tarefa de classificação definindo uma região do espaço de características onde o classificador deve ser um especialista. A classificação de uma instância de teste é realizada selecionando dinamicamente um conjunto de OCCs competentes e a decisão final é dada pela reconstrução do problema multiclasse original. Experimentos realizados com 25 bancos de dados, 4 modelos OCC e 3 métodos de agregação mostraram que as técnicas propostas superam a literatura. Quando comparado com técnicas da literatura, MODES e DBDES obtiveram melhores resul- tados, principalmente para bancos de dados com regiões de decisão complexas.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalSistemas de múltiplos classificadoresClustering-based dynamic ensemble selection for one-class decompositioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Rogério César Peixoto Fragoso.pdfTESE Rogério César Peixoto Fragoso.pdfapplication/pdf4729382https://repositorio.ufpe.br/bitstream/123456789/48095/1/TESE%20Rog%c3%a9rio%20C%c3%a9sar%20Peixoto%20Fragoso.pdf79a72d29fad192353c66708f9c7e3703MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/48095/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/48095/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTTESE Rogério César Peixoto Fragoso.pdf.txtTESE Rogério César Peixoto Fragoso.pdf.txtExtracted texttext/plain174590https://repositorio.ufpe.br/bitstream/123456789/48095/4/TESE%20Rog%c3%a9rio%20C%c3%a9sar%20Peixoto%20Fragoso.pdf.txt8ee60158f3bc49ad75f8898265823387MD54THUMBNAILTESE Rogério César Peixoto Fragoso.pdf.jpgTESE Rogério César Peixoto Fragoso.pdf.jpgGenerated Thumbnailimage/jpeg1223https://repositorio.ufpe.br/bitstream/123456789/48095/5/TESE%20Rog%c3%a9rio%20C%c3%a9sar%20Peixoto%20Fragoso.pdf.jpge6624dd4eb93538f3175927e2e24b76bMD55123456789/480952022-12-07 02:17:47.758oai:repositorio.ufpe.br:123456789/48095VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-12-07T05:17:47Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Clustering-based dynamic ensemble selection for one-class decomposition
title Clustering-based dynamic ensemble selection for one-class decomposition
spellingShingle Clustering-based dynamic ensemble selection for one-class decomposition
FRAGOSO, Rogério César Peixoto
Inteligência computacional
Sistemas de múltiplos classificadores
title_short Clustering-based dynamic ensemble selection for one-class decomposition
title_full Clustering-based dynamic ensemble selection for one-class decomposition
title_fullStr Clustering-based dynamic ensemble selection for one-class decomposition
title_full_unstemmed Clustering-based dynamic ensemble selection for one-class decomposition
title_sort Clustering-based dynamic ensemble selection for one-class decomposition
author FRAGOSO, Rogério César Peixoto
author_facet FRAGOSO, Rogério César Peixoto
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3641521745238692
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8577312109146354
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9378863653048055
http://lattes.cnpq.br/8607171759049558
dc.contributor.author.fl_str_mv FRAGOSO, Rogério César Peixoto
dc.contributor.advisor1.fl_str_mv CAVALCANTI, George Darmiton da Cunha
dc.contributor.advisor-co1.fl_str_mv PINHEIRO, Roberto Hugo Wanderley
OLIVEIRA, Luiz Eduardo Soares de
contributor_str_mv CAVALCANTI, George Darmiton da Cunha
PINHEIRO, Roberto Hugo Wanderley
OLIVEIRA, Luiz Eduardo Soares de
dc.subject.por.fl_str_mv Inteligência computacional
Sistemas de múltiplos classificadores
topic Inteligência computacional
Sistemas de múltiplos classificadores
description A natural solution to tackle multi-class problems is employing multi-class classifiers. How- ever, in specific situations, such as imbalanced data or a high number of classes, it is more effective to decompose the multi-class problem into several and easier to solve problems. One- class decomposition is an alternative, where one-class classifiers (OCCs) are trained for each class separately. However, fitting the data optimally is a challenge for classifiers, especially when it presents a complex intra-class distribution. The literature shows that multiple classifier systems are inherently robust in such cases. Thus, the adoption of multiple OCCs foreach class can lead to an improvement for the one-class decomposition. With that in mind, in this work, we introduce two methods for multi-class classification using ensembles of OCCs. One-class Classifier Dynamic Ensemble Selection for Multi-class problems (MODES, for short) and Density-Based Dynamic Ensemble Selection (DBDES) provide competent classifiers for each region of the feature space by decomposing the original multi-class problem into multiple one-class problems, segmenting the data from each class, and training a OCC for each cluster. The rationale is to reduce the complexity of the classification task by defining a region of the feature space where the classifier is supposed to be an expert. The classification of a test instance is performed by dynamically selecting an ensemble of competent OCCs and the final decision is given by the reconstruction of the original multi-class problem. Experiments carried out with 25 databases, 4 OCC models, and 3 aggregation methods showed that the proposed techniques outperform the literature. When compared with literature techniques, MODES and DBDES obtained better results, especially for databases with complex decision regions.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-12-06T11:30:39Z
dc.date.available.fl_str_mv 2022-12-06T11:30:39Z
dc.date.issued.fl_str_mv 2022-08-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FRAGOSO, Rogério César Peixoto. Clustering-based dynamic ensemble selection for one-class decomposition. 2022 Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/48095
dc.identifier.dark.fl_str_mv ark:/64986/001300000r3qt
identifier_str_mv FRAGOSO, Rogério César Peixoto. Clustering-based dynamic ensemble selection for one-class decomposition. 2022 Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
ark:/64986/001300000r3qt
url https://repositorio.ufpe.br/handle/123456789/48095
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/48095/1/TESE%20Rog%c3%a9rio%20C%c3%a9sar%20Peixoto%20Fragoso.pdf
https://repositorio.ufpe.br/bitstream/123456789/48095/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/48095/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/48095/4/TESE%20Rog%c3%a9rio%20C%c3%a9sar%20Peixoto%20Fragoso.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/48095/5/TESE%20Rog%c3%a9rio%20C%c3%a9sar%20Peixoto%20Fragoso.pdf.jpg
bitstream.checksum.fl_str_mv 79a72d29fad192353c66708f9c7e3703
e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
8ee60158f3bc49ad75f8898265823387
e6624dd4eb93538f3175927e2e24b76b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172892279701504