Using OLAP queries for data analysis on graph databases

Detalhes bibliográficos
Autor(a) principal: CYSNEIROS, Nicolle Chaves
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000jm34
Texto Completo: https://repositorio.ufpe.br/handle/123456789/43476
Resumo: Graph Databases (GDB) are an alternative to traditional Relational Databases and allow a better scalability for the system, in addition to representing highly connected data in a more natural way. GDBs also support different kind of network analysis, such as cen- trality measures and community detection algorithms. Despite this, there are still no tools available in the market for multidimensional analysis in graphs, such as existing OLAP systems that operate on Relational DBs. In the academic field, there are some framework proposals that aim at the construction of a multidimensional cube composed by aggre- gate graphs, which are obtained from the combination of vertices and edges of the original graph, according to the dimensions and measures being analysed. However, most part of the researches in this area are focused on the OLAP analysis for homogeneous graphs, while the works dedicated to heterogeneous graphs require an intermediate data model in order to execute the multidimensional analysis. This project proposes a system to execute OLAP queries in a Graph Database without the need to generate an intermediate data model to do multidimensional analysis on heterogeneous graphs. The proposed system is able to answer OLAP queries using aggregate graphs obtained from the original graph, as well as execute analysis about the topology of the graph. In this work, we present experiments showing the effectiveness of the system to answer the analytical queries and some qualitative comparisons between the proposed system and existing solutions.
id UFPE_5d5e9faa0cb93c82685889b96c3ffee4
oai_identifier_str oai:repositorio.ufpe.br:123456789/43476
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling CYSNEIROS, Nicolle Chaveshttp://lattes.cnpq.br/3312048097574861http://lattes.cnpq.br/1095193209251351SALGADO, Ana Carolina Brandão2022-03-22T17:21:04Z2022-03-22T17:21:04Z2017-09-01CYSNEIROS, Nicolle Chaves. Using OLAP queries for data analysis on graph databases. 2017. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2017.https://repositorio.ufpe.br/handle/123456789/43476ark:/64986/001300000jm34Graph Databases (GDB) are an alternative to traditional Relational Databases and allow a better scalability for the system, in addition to representing highly connected data in a more natural way. GDBs also support different kind of network analysis, such as cen- trality measures and community detection algorithms. Despite this, there are still no tools available in the market for multidimensional analysis in graphs, such as existing OLAP systems that operate on Relational DBs. In the academic field, there are some framework proposals that aim at the construction of a multidimensional cube composed by aggre- gate graphs, which are obtained from the combination of vertices and edges of the original graph, according to the dimensions and measures being analysed. However, most part of the researches in this area are focused on the OLAP analysis for homogeneous graphs, while the works dedicated to heterogeneous graphs require an intermediate data model in order to execute the multidimensional analysis. This project proposes a system to execute OLAP queries in a Graph Database without the need to generate an intermediate data model to do multidimensional analysis on heterogeneous graphs. The proposed system is able to answer OLAP queries using aggregate graphs obtained from the original graph, as well as execute analysis about the topology of the graph. In this work, we present experiments showing the effectiveness of the system to answer the analytical queries and some qualitative comparisons between the proposed system and existing solutions.Bancos de Dados (BDs) em Grafo são uma alternativa aos tradicionais BDs Rela- cionais e permitem uma melhor escalabilidade do sistema, além de uma maneira mais natural de representar dados altamente conectados. Os BDs em Grafo também permitem diferentes tipos de análises em grafos, como medidas de centralidade e algoritmos de de- tecção de comunidades. Apesar disso, ainda não existem ferramentas disponíveis no mer- cado para fazer análise multidimensional em grafos, como os sistemas OLAP existentes que operam sobre BDs Relacionais. No meio acadêmico, existem algumas propostas de frameworks que visam a construção de um cubo multidimensional composto por grafos agregados, obtidos a partir da combinação de nós e arestas do grafo original de acordo com as dimensões e medidas analisadas. Contudo, a maior parte das pesquisas são voltadas para a análise de grafos homogêneos, enquanto os trabalhos que se dedicam a grafos het- erogêneos realizam a análise multidimensional a partir de um modelo intermediário do dado original. Esse projeto propõe um sistema para a realização de consultas OLAP em um Banco de Dados em Grafo sem a necessidade da geração de um modelo intermediário de dados para realizar análise em grafos heterogêneos. O sistema proposto é capaz de re- sponder consultas OLAP a partir de grafos agregados extraídos do grafo original, além de também realizar análises acerca da topologia do grafo. Neste trabalho são apresentados experimentos mostrando a eficácia do sistema para responder às consultas analíticas e comparações específicas entre o sistema descrito e as soluções existentes.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessOLAPBando de dados em grafoGrafosAnálise de dadosUsing OLAP queries for data analysis on graph databasesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Nicolle Chaves Cysneiros.pdfDISSERTAÇÃO Nicolle Chaves Cysneiros.pdfapplication/pdf5524403https://repositorio.ufpe.br/bitstream/123456789/43476/1/DISSERTA%c3%87%c3%83O%20Nicolle%20Chaves%20Cysneiros.pdf9a56279be511b22095ae9da90c80c469MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/43476/3/license.txt6928b9260b07fb2755249a5ca9903395MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/43476/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52TEXTDISSERTAÇÃO Nicolle Chaves Cysneiros.pdf.txtDISSERTAÇÃO Nicolle Chaves Cysneiros.pdf.txtExtracted texttext/plain100476https://repositorio.ufpe.br/bitstream/123456789/43476/4/DISSERTA%c3%87%c3%83O%20Nicolle%20Chaves%20Cysneiros.pdf.txtd679674576a835b11d735d77bc72470bMD54THUMBNAILDISSERTAÇÃO Nicolle Chaves Cysneiros.pdf.jpgDISSERTAÇÃO Nicolle Chaves Cysneiros.pdf.jpgGenerated Thumbnailimage/jpeg1218https://repositorio.ufpe.br/bitstream/123456789/43476/5/DISSERTA%c3%87%c3%83O%20Nicolle%20Chaves%20Cysneiros.pdf.jpge33ee68e8cc47b7e103ef1e25fc9e236MD55123456789/434762022-03-23 02:14:31.802oai:repositorio.ufpe.br:123456789/43476VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-03-23T05:14:31Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Using OLAP queries for data analysis on graph databases
title Using OLAP queries for data analysis on graph databases
spellingShingle Using OLAP queries for data analysis on graph databases
CYSNEIROS, Nicolle Chaves
OLAP
Bando de dados em grafo
Grafos
Análise de dados
title_short Using OLAP queries for data analysis on graph databases
title_full Using OLAP queries for data analysis on graph databases
title_fullStr Using OLAP queries for data analysis on graph databases
title_full_unstemmed Using OLAP queries for data analysis on graph databases
title_sort Using OLAP queries for data analysis on graph databases
author CYSNEIROS, Nicolle Chaves
author_facet CYSNEIROS, Nicolle Chaves
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3312048097574861
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1095193209251351
dc.contributor.author.fl_str_mv CYSNEIROS, Nicolle Chaves
dc.contributor.advisor1.fl_str_mv SALGADO, Ana Carolina Brandão
contributor_str_mv SALGADO, Ana Carolina Brandão
dc.subject.por.fl_str_mv OLAP
Bando de dados em grafo
Grafos
Análise de dados
topic OLAP
Bando de dados em grafo
Grafos
Análise de dados
description Graph Databases (GDB) are an alternative to traditional Relational Databases and allow a better scalability for the system, in addition to representing highly connected data in a more natural way. GDBs also support different kind of network analysis, such as cen- trality measures and community detection algorithms. Despite this, there are still no tools available in the market for multidimensional analysis in graphs, such as existing OLAP systems that operate on Relational DBs. In the academic field, there are some framework proposals that aim at the construction of a multidimensional cube composed by aggre- gate graphs, which are obtained from the combination of vertices and edges of the original graph, according to the dimensions and measures being analysed. However, most part of the researches in this area are focused on the OLAP analysis for homogeneous graphs, while the works dedicated to heterogeneous graphs require an intermediate data model in order to execute the multidimensional analysis. This project proposes a system to execute OLAP queries in a Graph Database without the need to generate an intermediate data model to do multidimensional analysis on heterogeneous graphs. The proposed system is able to answer OLAP queries using aggregate graphs obtained from the original graph, as well as execute analysis about the topology of the graph. In this work, we present experiments showing the effectiveness of the system to answer the analytical queries and some qualitative comparisons between the proposed system and existing solutions.
publishDate 2017
dc.date.issued.fl_str_mv 2017-09-01
dc.date.accessioned.fl_str_mv 2022-03-22T17:21:04Z
dc.date.available.fl_str_mv 2022-03-22T17:21:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CYSNEIROS, Nicolle Chaves. Using OLAP queries for data analysis on graph databases. 2017. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2017.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/43476
dc.identifier.dark.fl_str_mv ark:/64986/001300000jm34
identifier_str_mv CYSNEIROS, Nicolle Chaves. Using OLAP queries for data analysis on graph databases. 2017. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2017.
ark:/64986/001300000jm34
url https://repositorio.ufpe.br/handle/123456789/43476
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/43476/1/DISSERTA%c3%87%c3%83O%20Nicolle%20Chaves%20Cysneiros.pdf
https://repositorio.ufpe.br/bitstream/123456789/43476/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/43476/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/43476/4/DISSERTA%c3%87%c3%83O%20Nicolle%20Chaves%20Cysneiros.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/43476/5/DISSERTA%c3%87%c3%83O%20Nicolle%20Chaves%20Cysneiros.pdf.jpg
bitstream.checksum.fl_str_mv 9a56279be511b22095ae9da90c80c469
6928b9260b07fb2755249a5ca9903395
e39d27027a6cc9cb039ad269a5db8e34
d679674576a835b11d735d77bc72470b
e33ee68e8cc47b7e103ef1e25fc9e236
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172838610436096