Candidemia nosocomial : diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial

Detalhes bibliográficos
Autor(a) principal: CASTRO, Maria da Conceição Alexandre
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000006rnw
Texto Completo: https://repositorio.ufpe.br/handle/123456789/42765
Resumo: O controle e diagnóstico das infecções por Candida ainda é um desafio clínico mundial. A candidemia apresenta índices de mortalidade hospitalar cada vez mais crescente, com distribuição de espécies de Candida não-albicans apresentando perfil de suscetibilidade antifúngica diferenciadas, afetando principalmente pacientes em UTI. O objetivo desse estudo foi identificar e caracterizar a epidemiologia das candidemias nosocomiais, determinar a sensibilidade antifúngica dos isolados e propor a metodologia proteômica MALDI-TOF e de inteligência artificial para identificação rápida das espécies de Candida. Trata-se de um estudo transversal analítico descritivo, realizado no período de 2018 a 2020, com 50 pacientes internados em UTIs de três hospitais terciários, na cidade de Natal no Estado do Rio Grande do Norte. Além disso, foram obtidas leveduras de C. krusei e C. parapsilosis sensu stricto pertencentes à Coleção de Culturas Micoteca URM da Universidade Federal de Pernambuco. A identificação das espécies de Candida nas 50 amostras dos pacientes foi realizada através das técnicas de MALDI-TOF e PCR, onde foram identificadas principalmente as espécies Candida albicans (48%), C. tropicalis (32%) e C. pelliculosa (6%). Os principais fatores de risco para candidemia, entre os pacientes dos três hospitais, foi o uso de sondagem vesical (94%), nutrição parenteral (84%), cateter venoso central (48%), corticoterapia (44%) e imunossupressão (44%). Quando comparados os casos de candidemia nos diferentes hospitais e a apresentação das espécies de Candida, não houve diferença significativa na distribuição dos óbitos. O percentual de mortes foi de 16,67% no Hospital B e 25% no Hospital C. Entretanto, não obtivemos dados de óbito para os pacientes do Hospital A. Os isolados foram submetidos a testes de susceptibilidade antifúngica, observando-se o fenômeno de resistência por C. albicans a anidulafungina, micafungina, voriconazol e anfotericina B, bem como de C. tropicalis a estes dois últimos antifúngicos. C. pelliculosa também foi resistente ao voriconazol. Enquanto que C. parapsilosis e C. krusei apresentaram resistência à anidulafungina. A tecnologia do nariz eletrônico associada à inteligência artificial foi utilizada para identificar amostras de C. albicans (10), C. krusei (10) e C. parapsilosis sensu stricto (10). Como não foram encontrados estudos que realizam a identificação das espécies de Candida utilizando essa metodologia, construímos três bases de dados a partir das ATCC de C. albicans, C. krusei e C. parapsilosis sensu stricto. Métodos de inteligência artificial foram avaliados e os testes estatísticos foram aplicados para validação dos resultados. Nas três bases de teste utilizadas conseguimos resultados de acurácias consideravelmente altas, todas acima de 90%. A distribuição de espécies e susceptibilidade antifúngica de isolados de Candida provenientes de casos de candidemia trazem novas perspectivas ao entendimento desse grave panorama. Assim, fornece informações úteis sobre a epidemiologia, fatores de risco e padrão de susceptibilidade úteis para a seleção de agentes antifúngicos empíricos para pacientes com candidemia.
id UFPE_5db5c4bc6ed5cc7aa13fd0dd7932d56d
oai_identifier_str oai:repositorio.ufpe.br:123456789/42765
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling CASTRO, Maria da Conceição Alexandrehttp://lattes.cnpq.br/0058965366974006http://lattes.cnpq.br/0360951033804105http://lattes.cnpq.br/9993875563206244NEVES, Rejane PereiraLIMA NETO, Reginaldo Gonçalves de2022-02-09T13:02:18Z2022-02-09T13:02:18Z2021-08-05CASTRO, Maria da Conceição Alexandre. Candidemia nosocomial: diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial. 2021. Tese (Doutorado em Medicina Tropical) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/42765ark:/64986/0013000006rnwO controle e diagnóstico das infecções por Candida ainda é um desafio clínico mundial. A candidemia apresenta índices de mortalidade hospitalar cada vez mais crescente, com distribuição de espécies de Candida não-albicans apresentando perfil de suscetibilidade antifúngica diferenciadas, afetando principalmente pacientes em UTI. O objetivo desse estudo foi identificar e caracterizar a epidemiologia das candidemias nosocomiais, determinar a sensibilidade antifúngica dos isolados e propor a metodologia proteômica MALDI-TOF e de inteligência artificial para identificação rápida das espécies de Candida. Trata-se de um estudo transversal analítico descritivo, realizado no período de 2018 a 2020, com 50 pacientes internados em UTIs de três hospitais terciários, na cidade de Natal no Estado do Rio Grande do Norte. Além disso, foram obtidas leveduras de C. krusei e C. parapsilosis sensu stricto pertencentes à Coleção de Culturas Micoteca URM da Universidade Federal de Pernambuco. A identificação das espécies de Candida nas 50 amostras dos pacientes foi realizada através das técnicas de MALDI-TOF e PCR, onde foram identificadas principalmente as espécies Candida albicans (48%), C. tropicalis (32%) e C. pelliculosa (6%). Os principais fatores de risco para candidemia, entre os pacientes dos três hospitais, foi o uso de sondagem vesical (94%), nutrição parenteral (84%), cateter venoso central (48%), corticoterapia (44%) e imunossupressão (44%). Quando comparados os casos de candidemia nos diferentes hospitais e a apresentação das espécies de Candida, não houve diferença significativa na distribuição dos óbitos. O percentual de mortes foi de 16,67% no Hospital B e 25% no Hospital C. Entretanto, não obtivemos dados de óbito para os pacientes do Hospital A. Os isolados foram submetidos a testes de susceptibilidade antifúngica, observando-se o fenômeno de resistência por C. albicans a anidulafungina, micafungina, voriconazol e anfotericina B, bem como de C. tropicalis a estes dois últimos antifúngicos. C. pelliculosa também foi resistente ao voriconazol. Enquanto que C. parapsilosis e C. krusei apresentaram resistência à anidulafungina. A tecnologia do nariz eletrônico associada à inteligência artificial foi utilizada para identificar amostras de C. albicans (10), C. krusei (10) e C. parapsilosis sensu stricto (10). Como não foram encontrados estudos que realizam a identificação das espécies de Candida utilizando essa metodologia, construímos três bases de dados a partir das ATCC de C. albicans, C. krusei e C. parapsilosis sensu stricto. Métodos de inteligência artificial foram avaliados e os testes estatísticos foram aplicados para validação dos resultados. Nas três bases de teste utilizadas conseguimos resultados de acurácias consideravelmente altas, todas acima de 90%. A distribuição de espécies e susceptibilidade antifúngica de isolados de Candida provenientes de casos de candidemia trazem novas perspectivas ao entendimento desse grave panorama. Assim, fornece informações úteis sobre a epidemiologia, fatores de risco e padrão de susceptibilidade úteis para a seleção de agentes antifúngicos empíricos para pacientes com candidemia.CAPESThe control and diagnosis of Candida infections is still a worldwide clinical challenge. Candidemia has an increasing in-hospital mortality rate, with the distribution of non-albicans Candida species presenting a differentiated antifungal susceptibility profile, mainly affecting ICU patients. The aim of this study was to identify and characterize the epidemiology of nosocomial candidemias, determine the antifungal sensitivity of the isolates and propose the MALDI-TOF proteomics and artificial intelligence methodology for rapid identification of Candida species. This is an analytical descriptive cross-sectional study, carried out from 2018 to 2020, with 50 patients admitted to ICUs of three tertiary hospitals, in the city of Natal, State of Rio Grande do Norte. In addition, yeasts of C. krusei and C. parapsilosis sensu stricto belonging to the URM Micoteca Culture Collection of the Federal University of Pernambuco were obtained. The identification of Candida species in the 50 patient samples was performed using the MALDI-TOF and PCR techniques, where Candida albicans (48%), C. tropicalis (32%), and C. pelliculosa (6%) were identified. The main risk factors for candidemia among patients at the three hospitals were the use of urinary catheters (94%), parenteral nutrition (84%), central venous catheter (48%), corticosteroid therapy (44%) and immunosuppression (44 %). When comparing the cases of candidemia in different hospitals and the presentation of Candida species, there was no significant difference in the distribution of deaths. The percentage of deaths was 16.67% in Hospital B and 25% in Hospital C. However, we did not obtain death data for patients in Hospital A. The isolates were submitted to antifungal susceptibility tests, observing the phenomenon of resistance by C. albicans to anidulafungin, micafungin, voriconazole, and amphotericin B, as well as by C. tropicalis to these last two antifungals. C. pelliculosa was also resistant to voriconazole. While C. parapsilosis and C. krusei showed resistance to anidulafungin. The electronic nose technology associated with artificial intelligence was used to identify samples of C. albicans (10), C. krusei (10), and C. parapsilosis sensu stricto (10). As no studies were found to identify Candida species using this methodology, we built three databases from the ATCC of C. albicans, C. krusei, and C. parapsilosis sensu stricto. Artificial intelligence methods were evaluated and statistical tests were applied to validate the results. In the three test bases used, we achieved considerably high accuracy results, all above 90%. The species distribution and antifungal susceptibility of Candida isolate from candidemia cases bring new perspectives to the understanding of this serious scenario. Thus, it provides useful information on the epidemiology, risk factors, and susceptibility pattern useful for the selection of empirical antifungal agents for patients with candidemia.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Medicina TropicalUFPEBrasilCandidemiaUnidades de Terapia IntensivaResistência AntifúngicaRio Grande do NorteNariz EletrônicoCandidemia nosocomial : diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificialinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPELICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/42765/2/license.txt6928b9260b07fb2755249a5ca9903395MD52ORIGINALTESE Maria da Conceição Alexandre Castro.pdfTESE Maria da Conceição Alexandre Castro.pdfapplication/pdf1566603https://repositorio.ufpe.br/bitstream/123456789/42765/1/TESE%20Maria%20da%20Concei%c3%a7%c3%a3o%20Alexandre%20Castro.pdfe391de8083d54d5bc3e6efd103141e3cMD51TEXTTESE Maria da Conceição Alexandre Castro.pdf.txtTESE Maria da Conceição Alexandre Castro.pdf.txtExtracted texttext/plain167489https://repositorio.ufpe.br/bitstream/123456789/42765/3/TESE%20Maria%20da%20Concei%c3%a7%c3%a3o%20Alexandre%20Castro.pdf.txt413c07e5aa7d91821317b4c6c86a6b1dMD53THUMBNAILTESE Maria da Conceição Alexandre Castro.pdf.jpgTESE Maria da Conceição Alexandre Castro.pdf.jpgGenerated Thumbnailimage/jpeg1255https://repositorio.ufpe.br/bitstream/123456789/42765/4/TESE%20Maria%20da%20Concei%c3%a7%c3%a3o%20Alexandre%20Castro.pdf.jpgf1fd878b9a4077b618ff3be922e2682fMD54123456789/427652022-02-10 02:14:23.465oai:repositorio.ufpe.br:123456789/42765VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-02-10T05:14:23Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Candidemia nosocomial : diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial
title Candidemia nosocomial : diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial
spellingShingle Candidemia nosocomial : diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial
CASTRO, Maria da Conceição Alexandre
Candidemia
Unidades de Terapia Intensiva
Resistência Antifúngica
Rio Grande do Norte
Nariz Eletrônico
title_short Candidemia nosocomial : diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial
title_full Candidemia nosocomial : diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial
title_fullStr Candidemia nosocomial : diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial
title_full_unstemmed Candidemia nosocomial : diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial
title_sort Candidemia nosocomial : diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial
author CASTRO, Maria da Conceição Alexandre
author_facet CASTRO, Maria da Conceição Alexandre
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0058965366974006
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0360951033804105
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9993875563206244
dc.contributor.author.fl_str_mv CASTRO, Maria da Conceição Alexandre
dc.contributor.advisor1.fl_str_mv NEVES, Rejane Pereira
dc.contributor.advisor-co1.fl_str_mv LIMA NETO, Reginaldo Gonçalves de
contributor_str_mv NEVES, Rejane Pereira
LIMA NETO, Reginaldo Gonçalves de
dc.subject.por.fl_str_mv Candidemia
Unidades de Terapia Intensiva
Resistência Antifúngica
Rio Grande do Norte
Nariz Eletrônico
topic Candidemia
Unidades de Terapia Intensiva
Resistência Antifúngica
Rio Grande do Norte
Nariz Eletrônico
description O controle e diagnóstico das infecções por Candida ainda é um desafio clínico mundial. A candidemia apresenta índices de mortalidade hospitalar cada vez mais crescente, com distribuição de espécies de Candida não-albicans apresentando perfil de suscetibilidade antifúngica diferenciadas, afetando principalmente pacientes em UTI. O objetivo desse estudo foi identificar e caracterizar a epidemiologia das candidemias nosocomiais, determinar a sensibilidade antifúngica dos isolados e propor a metodologia proteômica MALDI-TOF e de inteligência artificial para identificação rápida das espécies de Candida. Trata-se de um estudo transversal analítico descritivo, realizado no período de 2018 a 2020, com 50 pacientes internados em UTIs de três hospitais terciários, na cidade de Natal no Estado do Rio Grande do Norte. Além disso, foram obtidas leveduras de C. krusei e C. parapsilosis sensu stricto pertencentes à Coleção de Culturas Micoteca URM da Universidade Federal de Pernambuco. A identificação das espécies de Candida nas 50 amostras dos pacientes foi realizada através das técnicas de MALDI-TOF e PCR, onde foram identificadas principalmente as espécies Candida albicans (48%), C. tropicalis (32%) e C. pelliculosa (6%). Os principais fatores de risco para candidemia, entre os pacientes dos três hospitais, foi o uso de sondagem vesical (94%), nutrição parenteral (84%), cateter venoso central (48%), corticoterapia (44%) e imunossupressão (44%). Quando comparados os casos de candidemia nos diferentes hospitais e a apresentação das espécies de Candida, não houve diferença significativa na distribuição dos óbitos. O percentual de mortes foi de 16,67% no Hospital B e 25% no Hospital C. Entretanto, não obtivemos dados de óbito para os pacientes do Hospital A. Os isolados foram submetidos a testes de susceptibilidade antifúngica, observando-se o fenômeno de resistência por C. albicans a anidulafungina, micafungina, voriconazol e anfotericina B, bem como de C. tropicalis a estes dois últimos antifúngicos. C. pelliculosa também foi resistente ao voriconazol. Enquanto que C. parapsilosis e C. krusei apresentaram resistência à anidulafungina. A tecnologia do nariz eletrônico associada à inteligência artificial foi utilizada para identificar amostras de C. albicans (10), C. krusei (10) e C. parapsilosis sensu stricto (10). Como não foram encontrados estudos que realizam a identificação das espécies de Candida utilizando essa metodologia, construímos três bases de dados a partir das ATCC de C. albicans, C. krusei e C. parapsilosis sensu stricto. Métodos de inteligência artificial foram avaliados e os testes estatísticos foram aplicados para validação dos resultados. Nas três bases de teste utilizadas conseguimos resultados de acurácias consideravelmente altas, todas acima de 90%. A distribuição de espécies e susceptibilidade antifúngica de isolados de Candida provenientes de casos de candidemia trazem novas perspectivas ao entendimento desse grave panorama. Assim, fornece informações úteis sobre a epidemiologia, fatores de risco e padrão de susceptibilidade úteis para a seleção de agentes antifúngicos empíricos para pacientes com candidemia.
publishDate 2021
dc.date.issued.fl_str_mv 2021-08-05
dc.date.accessioned.fl_str_mv 2022-02-09T13:02:18Z
dc.date.available.fl_str_mv 2022-02-09T13:02:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CASTRO, Maria da Conceição Alexandre. Candidemia nosocomial: diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial. 2021. Tese (Doutorado em Medicina Tropical) - Universidade Federal de Pernambuco, Recife, 2021.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/42765
dc.identifier.dark.fl_str_mv ark:/64986/0013000006rnw
identifier_str_mv CASTRO, Maria da Conceição Alexandre. Candidemia nosocomial: diagnóstico com proteômica aplicada na identificação e resistência das leveduras e uso da inteligência artificial. 2021. Tese (Doutorado em Medicina Tropical) - Universidade Federal de Pernambuco, Recife, 2021.
ark:/64986/0013000006rnw
url https://repositorio.ufpe.br/handle/123456789/42765
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Medicina Tropical
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/42765/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/42765/1/TESE%20Maria%20da%20Concei%c3%a7%c3%a3o%20Alexandre%20Castro.pdf
https://repositorio.ufpe.br/bitstream/123456789/42765/3/TESE%20Maria%20da%20Concei%c3%a7%c3%a3o%20Alexandre%20Castro.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/42765/4/TESE%20Maria%20da%20Concei%c3%a7%c3%a3o%20Alexandre%20Castro.pdf.jpg
bitstream.checksum.fl_str_mv 6928b9260b07fb2755249a5ca9903395
e391de8083d54d5bc3e6efd103141e3c
413c07e5aa7d91821317b4c6c86a6b1d
f1fd878b9a4077b618ff3be922e2682f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172742826164224