Modelos Não Lineares Generalizados com Superdispersão

Detalhes bibliográficos
Autor(a) principal: Terra, Maria Lídia Coco
Data de Publicação: 2013
Outros Autores: Cysneiros, Audrey Helen A
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000015b80
Texto Completo: https://repositorio.ufpe.br/handle/123456789/12148
Resumo: Dey et al. (1997) propuseram uma classe de modelos que permite a introdução de um segundo parâmetro que controla a variância independentemente da média através de um modelo de regressão, chamada modelos lineares generalizados com superdispersão. Nesta tese, estendemos a classe de modelos proposta por Dey et al. (1997) permitindo que as funções de ligações da média e da dispersão possam ser funções não lineares obtendo expressões matriciais para os fatores de correção Bartlett e tipo-Bartlett para as estatísticas da razão da verossimilhanças e escore, respectivamente, na classe dos modelos não lineares generalizados com superdispersão (MNLGSs). Foi realizado um estudo de simulação para avaliar os desempenhos dos testes baseados nas estatísticas da razão de verossimilhanças e escore com suas respectivas versões corrigidas (Bartlett e tipo-Bartlett) com relação ao tamanho e poder em amostras de tamanhos finitos. Propomos também técnicas de diagnósticos para os MNLGSs, tais como: Alavancagem generalizada, Distância de Cook e Influência local. Finalmente, um conjunto de dados reais é utilizado para avaliar nossos resultados teóricos
id UFPE_6008dca0d5d7456081ecc3bab9fbbd52
oai_identifier_str oai:repositorio.ufpe.br:123456789/12148
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Terra, Maria Lídia CocoCysneiros, Audrey Helen A2015-03-12T14:03:12Z2015-03-12T14:03:12Z2013-01-31https://repositorio.ufpe.br/handle/123456789/12148ark:/64986/0013000015b80Dey et al. (1997) propuseram uma classe de modelos que permite a introdução de um segundo parâmetro que controla a variância independentemente da média através de um modelo de regressão, chamada modelos lineares generalizados com superdispersão. Nesta tese, estendemos a classe de modelos proposta por Dey et al. (1997) permitindo que as funções de ligações da média e da dispersão possam ser funções não lineares obtendo expressões matriciais para os fatores de correção Bartlett e tipo-Bartlett para as estatísticas da razão da verossimilhanças e escore, respectivamente, na classe dos modelos não lineares generalizados com superdispersão (MNLGSs). Foi realizado um estudo de simulação para avaliar os desempenhos dos testes baseados nas estatísticas da razão de verossimilhanças e escore com suas respectivas versões corrigidas (Bartlett e tipo-Bartlett) com relação ao tamanho e poder em amostras de tamanhos finitos. Propomos também técnicas de diagnósticos para os MNLGSs, tais como: Alavancagem generalizada, Distância de Cook e Influência local. Finalmente, um conjunto de dados reais é utilizado para avaliar nossos resultados teóricosCAPESporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAlavancagem generalizadaCorreção de BartlettCorreção tipo-BartlettInfluência LocalMétodos de diagnósticosModelos não lineares generalizados com superdispersãoTeste EscoreTeste da Razão de VerossimilhançasModelos Não Lineares Generalizados com Superdispersãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTeseDoutoradoMariaLidia.pdf.jpgTeseDoutoradoMariaLidia.pdf.jpgGenerated Thumbnailimage/jpeg1283https://repositorio.ufpe.br/bitstream/123456789/12148/5/TeseDoutoradoMariaLidia.pdf.jpg19f093bd20d2a028d06a808a247bd69fMD55ORIGINALTeseDoutoradoMariaLidia.pdfTeseDoutoradoMariaLidia.pdfapplication/pdf1307418https://repositorio.ufpe.br/bitstream/123456789/12148/1/TeseDoutoradoMariaLidia.pdff88f918ecc9fbd62d6fddde58ecb741fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/12148/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/12148/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTeseDoutoradoMariaLidia.pdf.txtTeseDoutoradoMariaLidia.pdf.txtExtracted texttext/plain148471https://repositorio.ufpe.br/bitstream/123456789/12148/4/TeseDoutoradoMariaLidia.pdf.txtc756fbd724aa0a87df11610952144c50MD54123456789/121482019-10-25 17:19:55.706oai:repositorio.ufpe.br:123456789/12148TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T20:19:55Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Modelos Não Lineares Generalizados com Superdispersão
title Modelos Não Lineares Generalizados com Superdispersão
spellingShingle Modelos Não Lineares Generalizados com Superdispersão
Terra, Maria Lídia Coco
Alavancagem generalizada
Correção de Bartlett
Correção tipo-Bartlett
Influência Local
Métodos de diagnósticos
Modelos não lineares generalizados com superdispersão
Teste Escore
Teste da Razão de Verossimilhanças
title_short Modelos Não Lineares Generalizados com Superdispersão
title_full Modelos Não Lineares Generalizados com Superdispersão
title_fullStr Modelos Não Lineares Generalizados com Superdispersão
title_full_unstemmed Modelos Não Lineares Generalizados com Superdispersão
title_sort Modelos Não Lineares Generalizados com Superdispersão
author Terra, Maria Lídia Coco
author_facet Terra, Maria Lídia Coco
Cysneiros, Audrey Helen A
author_role author
author2 Cysneiros, Audrey Helen A
author2_role author
dc.contributor.author.fl_str_mv Terra, Maria Lídia Coco
Cysneiros, Audrey Helen A
dc.subject.por.fl_str_mv Alavancagem generalizada
Correção de Bartlett
Correção tipo-Bartlett
Influência Local
Métodos de diagnósticos
Modelos não lineares generalizados com superdispersão
Teste Escore
Teste da Razão de Verossimilhanças
topic Alavancagem generalizada
Correção de Bartlett
Correção tipo-Bartlett
Influência Local
Métodos de diagnósticos
Modelos não lineares generalizados com superdispersão
Teste Escore
Teste da Razão de Verossimilhanças
description Dey et al. (1997) propuseram uma classe de modelos que permite a introdução de um segundo parâmetro que controla a variância independentemente da média através de um modelo de regressão, chamada modelos lineares generalizados com superdispersão. Nesta tese, estendemos a classe de modelos proposta por Dey et al. (1997) permitindo que as funções de ligações da média e da dispersão possam ser funções não lineares obtendo expressões matriciais para os fatores de correção Bartlett e tipo-Bartlett para as estatísticas da razão da verossimilhanças e escore, respectivamente, na classe dos modelos não lineares generalizados com superdispersão (MNLGSs). Foi realizado um estudo de simulação para avaliar os desempenhos dos testes baseados nas estatísticas da razão de verossimilhanças e escore com suas respectivas versões corrigidas (Bartlett e tipo-Bartlett) com relação ao tamanho e poder em amostras de tamanhos finitos. Propomos também técnicas de diagnósticos para os MNLGSs, tais como: Alavancagem generalizada, Distância de Cook e Influência local. Finalmente, um conjunto de dados reais é utilizado para avaliar nossos resultados teóricos
publishDate 2013
dc.date.issued.fl_str_mv 2013-01-31
dc.date.accessioned.fl_str_mv 2015-03-12T14:03:12Z
dc.date.available.fl_str_mv 2015-03-12T14:03:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/12148
dc.identifier.dark.fl_str_mv ark:/64986/0013000015b80
url https://repositorio.ufpe.br/handle/123456789/12148
identifier_str_mv ark:/64986/0013000015b80
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/12148/5/TeseDoutoradoMariaLidia.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/12148/1/TeseDoutoradoMariaLidia.pdf
https://repositorio.ufpe.br/bitstream/123456789/12148/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/12148/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/12148/4/TeseDoutoradoMariaLidia.pdf.txt
bitstream.checksum.fl_str_mv 19f093bd20d2a028d06a808a247bd69f
f88f918ecc9fbd62d6fddde58ecb741f
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
c756fbd724aa0a87df11610952144c50
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815173008381181952